自动控制理的研究离不开人类社会的发展。电子计算机的迅速发展、计算和信息处理的水平提高不断地促使着自动控制理论向更复杂的方向发展。自适应控制的提出是针对系统的非线性、不确定性、复杂性。它的研究主要目标不再是被控对象而是控制系统本身。自上世纪年代初神经网络控制系统,提出了基于理论和应用方面都有了新的突破。MATLAB简介MATLAB是美国MathWorks公司开发的用于教育、工程与科学计算的软件产品,它向用户提供从概念设计、数据分析、算法开发、建模仿真到实时实现的理想集成环境,是国际控制界公认的标准计算软件。经过十多年的不断地完善和扩充,MATLAB已经拥有了数十个工具箱和功能模块,可以实现数值分析、优化、统计偏微分方程数值解、自动控制、信号处理、图像处理、声音处理、系统建模等诸多领域的计算和图形显示功能。MATLAB提供了一种用于编程的高级语言——M语言。M语言是一种面向科学与工程计算的高级语言,其最大的特点是简单和直接。它允许用数学形式的语言编写程序,MATLAB的程序文件和脚本文件通常保存为后缀为“.m”的文件,可以称之为M文件。MATLAB是一种基于不限维数组数据类型的内部交互系统,它既能够进行矩阵和向量计算,也能够采用特定的方法在标量语言中编写程序。它采用一些常用的数学符号来表示问题及其解决方案,将计算、可视化和编程等功能集成于一个简单、易用的开发环境中,为用户工作平台的管理和数据的输入/输出提供了便利的方法,同时还提供了M文件的扩展和管理工具。神经网络自适应控制人工神经网络ANN(ArtificialNeuralNetwork)简称神经网络,是在现代神经学的基础上提出来的,是对人脑或自然神经网络基本特征的抽象和模拟。神经网络很早之前就被证明出来有逼近任意连续有界非线性函数的特殊能力。因此它有很多优点,比如强鲁棒性、容错性、强自适应能力强等。复杂的系统控制提供了一条全新的思路和选择。神经网络控制系统的结构形式有很多种,本文着重介绍神经网络自适应控制方法。一般包括补偿器和自适应处理单元。自适应控制系统的本质是一个非线性随机控制系统,很难为其找到合适的数学模型。为了充分发挥出自适应控制系统的优越性能,提高控制系统的鲁实时性、容错性、鲁棒性以及控制系统参数的自适应能力,能更有效地实现对一些非线性复杂过程系统的控制。人们因此想到将神经网络与自适应控制适当结合,于是就形成了基于神经网络的自适应控制系统。在现实生活中,每个实际的系统都具有不同程度的不确定性的变化规律难以掌握,同时还有各种各样的随机扰动作用在系统上,这些影响基本是不可预测的。人工神经网络是人们在模仿人的大脑处理问题时的过程中研究出来的一种新型信息处理理论,它通过对人脑的各种功能进行模拟和,从而实现与人脑相似的信息处理能力。神经网络自适应控制是根据自适应的基本原理,利用神经网络的特点和理论的结合而设计成的,发挥了自适应与神经网络的各自长处,为非线性控制系统的研究提供了一种全新的方法。