matlab程序设计实践

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

MATLAB程序设计实践1、编程实现以下科学计算算法,并举一例应用之。(参考书籍《精通MALAB科学计算》,王正林等著,电子工业出版社,2009年)“里查森迭代法线性方程组求解”解:算法说明:里查森迭代法是最简单的迭代法,它的迭代公式为:xk+1=(I-A)*xk+b;在MATLAB中编程实现的里查森迭代法函数为:richason。功能:用里查森迭代法求线性方程组调用格式:[x,n]=richason(A,b,x0,eps,M)其中,A为线性方程组的系数矩阵;b为线性方程组的常数向量;x0为迭代初始向量;eps为解的精度控制(此参数可选);M为迭代步数控制(此参数可选);x为线性方程组的解;n为求出所需精度的解实际的迭代步数。里查森迭代法的MATLAB程序代码如下:function[x,n]=richason(A,b,x0,eps,M)%采用里查森迭代法求线性方程组Ax=b的解%线性方程组的系数矩阵:A%线性方程组的常数向量:b%迭代初始向量:x0%解的精度控制:eps%迭代步数控制:M%线性方程组的解:x%求出所需精度的解实际的迭代步数:nif(nargin==3)eps=1.0e-6;%eps表示迭代精度M=200;%M表示迭代步数的限制值elseif(nargin==4)M=200;endI=eye(size(A));x1=x0;x=(I-A)*x0+b;n=1;%迭代过程while(norm(x-x1)eps)x1=x;x=(I-A)*x1+b;n=n+1;%n为最终求出解时的迭代步数if(n=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend实例:用里查森迭代法求以下线性方程组,其中初始值取为[000]19898.00136.00095.000136.09903.00092.010095.00092.00170.1321321321xxxxxxxxx输入:A=[1.0170-0.00920.0095;-0.00920.99030.0136;0.00950.01360.9898];b=[101]';x0=[000]';[x,n]=richason(A,b,x0)输出的计算结果为:x=0.9739-0.00471.0010输出的迭代次数为:n=5经过5步迭代,理查森迭代法求出了方程的解为:[x1,x2,x3]=[0.9738,-0.0047,1.0010]对上述迭代计算结果进行验证,在MATLAB命令窗口中输入如下程序:A*x输出结果为:ans=1.00000.00001.0000经检验,计算结果正确。程序运算截图如下:流程图:○1、源程序eps=10--6,最大步数为200n=1?x=(I-A)*x0+bnorm(x-x1)eps?N=200?Warning:迭代次数太多,可能不收敛x1=x;n=n+1最大步数M为200否是否否是是开始结束读取数据nargin==3?读取数据○2例题流程图解:(1)算法说明分析已给方程可知,22220uuxy为拉普拉斯方程,在MATLAB工具输入系数矩阵A输入初始向量x0及常数向量b[x,n]=richason(A,b,x0)输出计算结果输出迭代次数A*x验证结果箱PDETOOL中可看成椭圆型方程,转化为标准形式如下:2222,uucuaufxtxy因此,对应的c=-1,a=0,f=0,然后根据给出的边界约束条件,在微分方程工具箱中选择所需要的条件,①Dirichlet条件hur②Neumann条件()uncqugx其中n是上的单位外法矢量,g,q,h和r是定义在上的函数。(题目中Γ1与Γ2分别代表x+y=2与x-y=2这两条边界线)(2)操作流程○1设置坐标限选择Options栏中AxesLimits选项,输入坐标范围○2绘制区域图点击绘制多边形键画出要求的区域图○3设置边界条件选择Boundary中的BoundaryMode,设置为边界模式;双击各条边界线,由方程组中已知边界条件设定○4设置方程参数点击,将已知方程对照标准偏微分方程形式,知c=-1,a=0,f=0。○5剖分网格按顺序点击两按钮,细分网格。○6绘制温度分布图点击绘制三维示意图:(3)简易流程图实验1用GUI方式解下列PDE解:(1)算法说明同上题,由已给方程可知,22220uuxy为拉普拉斯方程,在PDETOOL中可看成椭圆型方程。(2)操作流程开始绘制要求区域图设置边界条件设置方程参数剖分网格绘制温度分布示意图结束○1设置坐标限○2绘制区域图○3设置边界条件u|x=0=y(3-y)u|y=0=sin(π/4*x)○4设置方程参数○5划分网格○6绘制特征值对应的函数图形二维图形:三维图形:

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功