4题库答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

亲们,别急,慢慢积累~1参考答案第一章一.名词解释1.在多肽分子中肽键的6个原子(Cα1,C,O,N,H,Cα2)位于同一平面,被称为肽单元。2.在蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,并具有相应的功能,被称为模序。3.在某些理化因素作用下,致使蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物活性,称为蛋白质变性。4.谷胱甘肽由谷氨酸、半胱氨酸和甘氨酸组成的三肽,半胱氨酸的巯基是该三肽的功能基团。它是体内重要的还原剂,以保护体内蛋白质或酶分子等中的巯基免遭氧化。5.在多肽链β折叠结构中,每个肽单元以Cα为旋转点,依次折叠成锯齿状结构,氨基酸残基侧链交替地位于锯齿状结构的上下方。两条以上肽链或一条肽链内的若干肽段的锯齿状结构可平行排列,其走向可相同,也可相反。并通过肽链间的肽键羰基氧和亚氨基氢形成氢键从而稳固β-折叠结构。6.分子伴侣是一类帮助新生多肽链正确折叠的蛋白质。它可逆的与未折叠肽段的疏水部分结合随后松开,如此重复进行可以防止错误的聚集发生,使肽链正确折叠。分子伴侣对于蛋白质分子中二硫键的正确形成起到重要作用。7.数个具有三级结构的多肽链,在三维空间作特定排布,并以非共价键维系其空间结构稳定,每一条多肽链称为亚基。这种蛋白质分子中各个亚基的空间排布及亚基间的相互作用,称为蛋白质的四级结构。8.蛋白质的三级结构常可分割成1个和数个球状区域,折叠得较为紧密,各行其能,称为结构域。9.在某一pH溶液中,蛋白质分子所带的正电荷和负电荷相等,净电荷为零,此溶液的pH值,即为该蛋白质的等电点。10.α-螺旋为蛋白质二级结构类型之一。在α-螺旋中,多肽链主链围绕中心轴作顺时钟方向的螺旋式上升,即所谓右手螺旋。每3.6个氨基酸残基上升一圈,氨基酸残基的侧链伸向螺旋的外侧。α-螺旋的稳定依靠α-螺旋每个肽键的亚氨基氢和第四个肽键的羰基氧形成的氢键维系。11.蛋白质空间构象的改变伴随其功能的变化,称为变构效应。具有变构效应的蛋白质称为变构蛋白,常有四级结构。以血红蛋白为例,一分子O2与一个血红素辅基结合,引起亚基构象变化,进而引起进相邻亚基构象变化,更易与O2结合。12.蛋白质三级结构是指整条多肽链中全部氨基酸残基的相对空间位置,也即整条多肽链所有原子在三维空间的排布位置。蛋白质三级结构的形成和稳定主要靠次级键----疏水作用、离子键、氢键和VanderWaals力等。13.一个氨基酸的氨基与另一个氨基酸的羧基脱去1分子H2O,所形成的酞胺键称为肽键。肽键的键长为0.132nm,具有一定程度的双键性质。参与肽键的6个原子位于同一平面。三.选择题(一)A型题1.A2.C3.C4.D5.E6.B7.B8.D9.D10.A11.C12.B13.C14.A15.C16.C17.A18.B19.B20.D21.D22.E23.A24.B25.D26.A27.C28.B29.A四.问答题1.各种蛋白质的含氮量颇为接近,平均为16%,因此测定蛋白质的含氮量就可推算出蛋白质含量。常用的公式为:蛋白质含量(克%)=每克样品含氮克数X6.25X100。2.一个氨基酸的a-羧基和另一个氨基酸的a-氨基,进行脱水缩合反应,生成的酰胺键称为肽键。肽键具有双键性质。由许多氨基酸通过肽键相连而形成长链,称为肽链。肽链有二端,游离a-氨基的一端称为N-末端,游离a-羧基的一端称为C-末端。蛋白质一级结构是指多肽链中氨基酸排列顺序,它的主要化学键为肽键。3.蛋白质二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。它主要有α-螺旋、β-折叠、β-转角和无规卷曲四种。在α-螺旋结构中,多肽链主链围绕中心轴以右手螺旋方式旋转上升,每隔3.6个氨基酸残基上升一圈。氨基酸残基的侧链伸向螺旋外侧。每个氨基酸残基的亚氨基上的氢与第四个氨基酸残基羰基上的氧形成氢键,以维持α-螺旋稳定。在β-折叠结构中,多肽键的肽键平面折叠成锯齿状结构,侧链交错位于锯齿状结构的上下方。两条以上肽键或一条肽键内的若干肽段平行排列,通过链间羰基氧和亚氨基氢形成氢键,维持β-折叠构象稳定。在球状蛋白质分子中,肽链主链常出现1800回折,回折部分称为β-转角。β-转角通常有4个氨基酸残基组成,第二个残基常为脯氨酸。无规卷曲是指肽链中没有确定规律的结构。4.蛋白质四级结构是指蛋白质分子中具有完整三级结构的各亚基在空间排布的相对位置。例如血红蛋白,它是由1个α亚基和1个β-亚基组成一个单体,二个单体呈对角排列,形成特定的空间位置关系。四个亚基间共有8个非共价键,维系其四级结构的稳定性。亲们,别急,慢慢积累~25.当配体与蛋白质亚基结合,引起亚基构象变化,从而改变蛋白质的生物活性,此种现象称为变构效应。变构效应也可发生于亚基之间,即当一个亚基构象的改变引起相邻的另一亚基的构象和功能的变化。例如一个氧分子与Hb分子中一个亚基结合,导致其构象变化,进一步影响第二个亚基的构象变化,使之更易与氧分子结合,依次使四个亚基均发生构象改变而与氧分子结合,起到运输氧的作用。6.蛋白质分离纯化的方法主要有:盐析、透析、超离心、电泳、离子交换层析、分子筛层析等方法。盐析是应用中性盐加入蛋白质溶液,破坏蛋白质的水化膜,使蛋白质聚集而沉淀。透析方法是利用仅能通透小分子化合物的半透膜,使大分子蛋白质和小分子化合物分离,达到浓缩蛋白质或去除盐类小分子的目的。蛋白质为胶体颗粒,在离心力作用下,可沉降。由于蛋白质其密度与形态各不相同,可以应用超离心法将各种不同密度的蛋白质加以分离。蛋白质在一定的pH溶液中可带有电荷,成为带电颗粒,在电场中向相反的电极方向泳动。由于蛋白质的质量和电荷量不同,其在电场中的泳动速率也不同,从而将蛋白质分离成泳动速率快慢不等的条带。蛋白质是两性电解质,在一定的pH溶液中,可解离成带电荷的胶体颗粒,可与层析柱内离子交换树脂颗粒表面的相反电荷相吸引,然后用盐溶液洗脱,带电量小的蛋白质先被洗脱,随着盐浓度增加,带电量多的也被洗脱,分部收集洗脱蛋白质溶液,达到分离蛋白质的目的。分子筛是根据蛋白质颗粒大小而进行分离的一种方法。层析柱内填充着带有小孔的颗粒,小分子蛋白质进入颗粒,而大分子蛋白则不能,因此不同分子量蛋白质在层折柱内的滞留时间不同,流出层析柱的先后不同,可将蛋白质按分子量大小而分离。第二章一.名词解释l.核小体由DNA和组蛋白共同构成。组蛋白分子共有五种,分别称为H1,H2A,H2B,H3和H4。各两分子的H2A,H2B,H3和H4共同构成了核小体的核心,DNA双螺旋分子缠绕在这一核心上构成了核小体。2.在DNA双链结构中,碱基位于内侧,两条链的碱基之间以氢键相接触。由于碱基结构的不同造成了其形成氢键的能力不同,因此产生了固有的配对方式,即腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C)。这种配对方式称为碱基互补。3.DNA的增色效应是指在其解链过程中,DNA的A260NM增加,与解链程度有一定的比例关系。4.DNA变性过程中,紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度(Tm)。在Tm时,核酸分子内50%的双链结构被解开。Tm值与DNA的分子大小和所含碱基中的G+C比例成正比。5.核糖体由rRNA与核糖体共同构成,分为大、小两个亚基。核糖体的功能是作为蛋白质合成的场所。核糖体的功能是为细胞内蛋白质的合成提供场所。在核糖体中,rRNA和核糖体蛋白共同形成了mRNA、tRNA与氨基酸的复合物、翻译起始因子、翻译延长因子等多种参与该合成过程的成分的识别和结合部位。6.具有自我催化能力的RNA分子自身可以进行分子的剪接,这种具有催化作用的RNA被称为核酶。7.热变性的DNA经缓慢冷却过程中,具有碱基序列部分互补的不同的DNA之间或DNA与RNA之间形成杂化双键的现象称为核酸分子杂交。8.反密码环位于tRNA三叶草形二级结构的下方,中间的3个碱基称为反密码子,与mRNA上相应的三联体密码可形成碱基互补。不同的tRNA有不同的反密码子,蛋白质生物合成时,靠反密码子来辨认mRNA上相应的三联体密码,将氨基酸正确的安放在合成的肽链上。9.这种DNA是左手螺旋。在体内,不同构象的DNA在功能上有所差异,可能参与基因表达的调节和控制。三.选择题1.B2.A3.C4.D5.C6.C7.A8.C9.C10.All.D12.B13.B14.A15.A16.B17.D18.C19.D20.A四.问答题1.动物细胞内主要含有的RNA种类及功能____________________________________________________________________________细胞核和胞液线粒体功能___________________________________________________________________________核糖体RNArRNAmtrRNA核糖体组成成分信使RNAmRNAmtmRNA蛋白质合成模板转运RNAtRNAmttRNA转运氨基酸不均一核RNAhnRNA成熟mRNA的前体小核RNASnRNA参与hnRNA的剪亲们,别急,慢慢积累~3接、转运小核仁RNASnoRNArRNA的加工和修饰小胞质RNAScRNA/7SL-RNA蛋白质内质网定位合成的信号识别体的组成成分____________________________________________________________________________2.约2米(10bp的长度为3.4nm,二倍体)。在真核生物内DNA以非常致密的形式存在于细胞核内,在细胞生活周期的大部分时间里以染色质的形式出现,在细胞分裂期形成染色体。染色体是由DNA和蛋白质构成的,是DNA的超级结构形式。染色体的基本单位是核小体。核小体由DNA和组蛋白共同构成。组蛋白分子构成核小体的核心,DNA双螺旋分子缠绕在这一核心上构成了核小体的核心颗粒。核小体的核心颗粒之间再由DNA(约60bp)和组蛋白H1构成的连接区连接起来形成串珠样的结构。在此基础上,核小体又进一步旋转折叠,经过形成30nm纤维状结构、300nm襻状结构、最后形成棒状的染色体。将存在于人的体细胞中的24条染色体,共计1米长的DNA分子容纳于直径只有数微米的细胞核中。3.DNA双螺旋结构模型的要点是:(1)DNA是一反向平行的双链结构,脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触。腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢健(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C)。碱基平面与线性分子结构的长轴相垂直。一条链的走向是5'→3',另一条链的走向就一定是3'→5'。(2)DNA是一右手螺旋结构。螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为360。螺距为3.4nm,每个碱基平面之间的距离为0.34nm。DNA双螺旋分子存在一个大沟和一个小沟。(3)DNA双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。4.RNA与DNA的差别主要有以下三点:(1)组成它的核苷酸中的戊糖成分不是脱氧核糖,而是核糖;(2)RNA中的嘧啶成分为胞嘧啶和尿嘧啶,而不含有胸腺嘧啶,所以构成RNA的基本的四种核苷酸是AMP、GMP、CMP和UMP,其中U代替了DNA中的T;(3)RNA的结构以单链为主,而非双螺旋结构。5.成熟的真核生物mRNA的结构特点是:(1)大多数的真核mRNA在5'-端以7-甲基鸟嘌呤及三磷酸鸟苷为分子的起始结构。这种结构称为帽子结构。帽子结构在mRNA作为模板翻译成蛋白质的过程中具有促进核糖体与mRNA的结合,加速翻译起始速度的作用,同时可以增强mRNA的稳定性。(2)在真核mRNA的3'末端,大多数有一段长短不一的多聚腺苷酸结构,通常称为多聚A尾。一般由数十个至一百几十个腺苷酸连接而成。因为在基因内没有找到它相应的结构,因此认为它是在RNA生成后才加进去的。

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功