第三节定积分的计算教学目的:使学生熟练掌握定积分换元积分法与分部积分法教学重点:定积分换元积分法一、换元积分法定理假设函数f(x)在区间[ab]上连续函数x(t)满足条件(1)()a()b(2)(t)在[](或[])上具有连续导数且其值域不越出[ab]则有dtttfdxxfba)()]([)(这个公式叫做定积分的换元公式证明由假设知f(x)在区间[ab]上是连续因而是可积的f[(t)](t)在区间[](或[])上也是连续的因而是可积的假设F(x)是f(x)的一个原函数则dxxfba)(F(b)F(a)另一方面因为{F[(t)]}F[(t)](t)f[(t)](t)所以F[(t)]是f[(t)](t)的一个原函数从而dtttf)()]([F[()]F[()]F(b)F(a)因此dtttfdxxfba)()]([)(例1计算adxxa022(a0)解20sin022coscostdtatadxxataxa令2022022)2cos1(2cosdttatdta220241]2sin21[2atta提示tataaxacossin22222dxacost当x0时t0当xa时2t例2计算xdxxsincos520解令tcosx则xxdxdxxcoscossincos52052061]61[106105015costdttdtttx令提示当x0时t1当2x时t0或xxdxdxxcoscossincos520520610cos612cos61]cos61[66206x例3计算053sinsindxxx解dxxxdxxx|cos|sinsinsin2300532232023cossincossinxdxxxdxx2232023sinsinsinsinxxdxxd54)52(52]sin52[]sin52[2252025xx提示|cos|sin)sin1(sinsinsin232353xxxxxx在]2,0[上|cosx|cosx在],2[上|cosx|cosx例4计算dxxx40122解3123121240)3(21221122dtttdtttdxxxtx令322)]331()9327[(21]331[21313tt提示212txdxtdt当x0时t1当x4时t3例5证明若f(x)在[aa]上连续且为偶函数则aaadxxfdxxf0)(2)(证明因为dxxfdxxfdxxfaaaa)()()(00而aaatxadxxfdttfdttfdxxf0000)()()()(令所以aaaadxxfdxxfdxxf00)()()(aaaadxxfdxxfdxxfxf00)(2)(2)]()([讨论若f(x)在[aa]上连续且为奇函数问aadxxf)(?提示若f(x)为奇函数则f(x)f(x)0从而0)]()([)(0aaadxxfxfdxxf例6若f(x)在[01]上连续证明(1)2020)(cos)(sindxxfdxxf(2)00)(sin2)(sindxxfdxxxf证明(1)令tx2则dttfdxxf)]2[sin()(sin02202020)(cos)]2[sin(dxxfdttf(2)令xt则00)][sin()()(sindttftdxxxf00)(sin)()][sin()(dttftdttft00)(sin)(sindtttfdttf00)(sin)(sindxxxfdxxf所以00)(sin2)(sindxxfdxxxf例7设函数01cos110)(2xxxxexfx计算41)2(dxxf解设x2t则200121412cos11)()2(dttedttdttfdxxft212121tan]21[]2[tan420012eett提示设x2t则dxdt当x1时t1当x4时t2二、分部积分法设函数u(x)、v(x)在区间[ab]上具有连续导数u(x)、v(x)由(uv)uvuv得uvuvuv等式两端在区间[ab]上积分得vdxuuvdxvubababa][或vduuvudvbababa][这就是定积分的分部积分公式分部积分过程][][vdxuuvvduuvudvdxvubabababababa例1计算xdxarcsin210解xdxarcsin210xxdxxarcsin]arcsin[210210dxxx22101621)1(11211222210xdx2102]1[12x12312例2计算10dxex解令tx则10102tdtedxetx102ttde10102][2dtetett2][2210tee例3设20sinxdxInn证明(1)当n为正偶数时22143231nnnnIn(2)当n为大于1的正奇数时3254231nnnnIn证明20sinxdxInn201cossinxxdn201201sincos]sin[cosxxdxxnn2022sincos)1(xdxxnn202)sin(sin)1(dxxxnnn20202sin)1(sin)1(xdxnxdxnnn(n1)In2(n1)In由此得21nnInnI02214342522232212ImmmmmmIm112325432421222122ImmmmmmIm而2200dxI1sin201xdxI因此22143425222322122mmmmmmIm32543242122212212mmmmmmIm例3设20sinxdxInn(n为正整数)证明22143425222322122mmmmmmIm32543242122212212mmmmmmIm证明20sinxdxInn201cossinxxdn2022201sincos)1(]sin[cosxdxxnxxnn202)sin(sin)1(dxxxnnn20202sin)1(sin)1(xdxnxdxnnn(n1)In2(n1)In由此得21nnInnI02214342522232212ImmmmmmIm112325432421222122ImmmmmmIm特别地2200dxI1sin201xdxI因此22143425222322122mmmmmmIm32543242122212212mmmmmmIm课堂练习:1.求0212dxx2.设2x1x,-21x0,)(xxf,求20)(dxxf。