网格专题三、解答题1、(2012年江西南昌十五校联考)如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.求光点P经过的路径总长(结果保留π).答案:解:∵90π346π180,∴点P经过的路径总长为6π………4分1、)图①、图②均为76的正方形网格,点ABC、、在格点(小正方形的顶点)上.(1)在图①中确定格点D,并画出一个以ABCD、、、为顶点的四边形,使其为轴对称图形;(2)在图②中确定格点E,并画出一个以ABCE、、、为顶点的四边形,使其为中心对称图形.[w%2、(2012山东省德州二模)如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点F、A出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动AD图3BCP绕点A顺时针旋转90°绕点B顺时针旋转90°绕点C顺时针旋转90°图2输入点P输出点绕点D顺时针旋转90°AD图1BCPABC图①ABC图②到点E时,两个点都停止运动。(1)请在6×8的网格纸中画出运动时间t为2秒时的线段PQ;(2)如图2,动点P、Q在运动的过程中,PQ能否垂直于BF?请说明理由。(3)在动点P、Q运动的过程中,△PQB能否成为等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.[@z#step.~co&m]答案:(1)略…………………………………………………………………………2分(2)不能…………………………………………………………………………3分若PQ⊥BF时,………………………………………………………………5分,429,所以不能……………………………………………………………………6分(3)①BP=PQ,38t或8(舍去)……………………………………………………8分②BQ=PQ,47t………………………………………………………………9分[^zs#tep.c*o~m]③BP=BQ,无解…………………………………………………………………10分3、(2012山东省德州三模)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺........在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),①依次连结A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是▲.②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法);此时,点P的坐标为▲,最短周长为▲.[中@国%教#&育出版网*]29tA(Q)AQBBEEFF(P)PAF图1图2AOBxyDOEBC[中#国%^@教育出版网~]答案:解:(1)如图所示;……………………………………………………………………2分(2)①等腰梯形;…………………………………………………………………4分②P(31,0)…………………………………………………………………6分597(其中画图正确得2分)……………………………………10分4、(2012江西高安)问题背景:在ABC△中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC△(即ABC△三个顶点都在小正方形的顶点处),如图①所示.这样不需求ABC△的高,而借用网格就能计算出它的面积.(1)请你将ABC△的面积直接填写在横线上.__________________思维拓展:(2)我们把上述求ABC△面积的方法叫做构图法....若ABC△三边的长分别为5a、22a、17a(0a),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的ABC△,并求出它的面积.探索创新:(3)若ABC△三边的长分别为2216mn、2294mn、222mn(00mn,,且mn),试运用构图法...求出这三角形的面积.[w#ww.zzs%~@tep^.com][w^ww.zzst&~ep.c#om%]答案:(1)错误!未找到引用源。;(2)3错误!未找到引用源。;(3)5mn[w%ww^.zzste&p.*co#m]5(马鞍山六中2012中考一模)分别按下列要求解答:(1)在图1中,将△ABC先向左平移5个单位,再作关于直线AB的轴对称图形,经两次变换后得到△A1B1C1,画出△A1B1C1;D'PxyOBCDA(第24题图)(图①)(图②)ACB(2)在图2中,△ABC经变换得到△A2B2C2.描述变换过程.[中^国教育~@出*版网#]图1图2答案:(1)如图.……………………………………………………4分(2)将△ABC先关于点A作中心对称图形,再向左平移2个单位,得到△A2B2C2.(变换过程不唯一)…………………………………………8分6(2012年南岗初中升学调研)如图,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在小正方形的顶点上(1)以AB为腰的锐角等腰三角形[中%^@国教育&出~版网][中国教&^~育出#*版网][中@~国&教育出#*版网][中国#教~&@育%出版网][^zs#tep.c*o~m](2)以AB为一边的钝角三角形且面积等于4.0123456789101211121110987654321ABCA2B2C20123456789101211121110987654321ABC[中国教@%育*出版#网^][中@国%教#&育出版*网]7、(2012年北京中考数学模拟试卷)如图3,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连接为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B的坐标为(-2,-2).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形,此时点B1的坐标为.(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形,此时点B2的坐标为.(3)把△ABC以点A为位似中心放大为△AB3C3,使放大前后对应边长的比为1︰2,画出△AB3C3的图形.(1)B1坐标(-10,-2);[中国教育#出&%版*网^](2)如图B2坐标(3,3)s%~@tep#.com](3)画出△AB3C3的图形[中国教&育#出^*版~网]8、(海南省2012年中考数学科模拟)(本题满分8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐ABxyOC(图3)ABxyOCB2A2C1A1B1B3C3标系后,△ABC的顶点均在格点上,点C的坐标为(0,-1),[w@ww.zzstep~%.co*&m](1)写出A、B两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)画出△ABC绕点C旋转180°后得到的△A2B2C2。[w%ww^.zzste&p.*co#m](本题满分8分)(1)A(-1,2)B(-3,1);……2分(2)画图答案如图所示………5分(3)画图答案如图所示………8分9、(徐州市2012年初中毕业、升学模拟考试)(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.解:如下图所示,xyCBOA第21题图第21题图xyOCBAA1B1(C1,C2)A2B2yxCBAC2B2A2C1B1A1yxCBA(4)对称中心是(0,0).(每小问2分)[w~^%ww#.zz*step.com]10(盐城市亭湖区2012年第一次调研考试)(本题满分8分)如图9,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,坐标为A(1,-4),B(5,-4),C(41),.(1)作出ABC关于x轴对称的111CBA,并写出点C的对称点1C的坐标;(2)作出ABC关于原点O对称的222CBA,并写出点C的对称点2C的坐标;(3)试判断:111CBA与222CBA是否关于y轴对称(只需写出判断结果)。解作图略(1)C1(4,1)(3分)(2)C2(-4,1)(3分)(3)关于y轴对称。(2分)图9