9虚速率及其存在下的相对论

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

9、虚速率及其存在下的相对论赫拉克利特(鼎盛年约BC504-501)已经认识到“思想是最大的优点,智慧就在于说出真理,智慧只在于一件事,就是认识那善于驾驭一切的思想。”,亚里士多德(BC384-322)则更加明确地指出“人们追求智慧是为了求知,并不是为了实用。”量子统计物理证明了,任何具有上限能量且有有限个能级的平衡孤立系统,可以出现负绝对温度。当温度T→+∞后,系统内能再增大,温度跳变到T<0,这就是负温度状态。负温度的存在,不仅在理论上得到证明,而且在核磁共振与激光技术中已有应用。由量子统计物理可知,粒子具有的统计平均速率与系统温度的平方根成正比,V∝T0.5,当T>0时,V为实速率;当T<0时,V=vi为虚速率【1】。既然负温度的存在,不仅在理论上得到证明,而且在核磁共振与激光技术中已有应用,因此我们应该承认负温度与虚速率的存在,进一步假定Lorentztransformation对于虚速率状态依然成立。当物体的运动速率为虚速率时,加速度应当为虚加速度,此时[1-(∫t0aidt)2/c2]>1,于是:当速率的绝对值增加时,物体引力质量减小、长度增加、时钟加速;当速率的绝对值减小时,物体的引力质量增加、时钟延缓、长度缩短。参考文献:【1】阎庚年著.《热力学史》山东科学技术出版社1989年5月版附录:负温度——颠倒了的物理世界文章提供于2013-1-1410:29:29(北京时间:2013-1-1423:29:29)文章作者:程鹗今年元旦刚过,德国物理学家乌尔里克·斯奈德便发布了一项新成就:实现了处于比绝对零度还低的“负温度”状态的气体。这个结果通过新闻界报道引发了对温度的好奇。其实,所谓的“负温度”并不是一项新发明,也不是不可思议的极低温。恰恰相反,那可以说是非常高的温度,以至于无法用通常的温度概念描述。这也是一个与经验相反的颠倒世界。……热力学研究发现,不仅仅不存在绝对零度以下(负温度)的状态,绝对零度本身也是无法达到的。此后发现的量子力学之测不准原理更说明原子是不可能绝对静止,因此不可能存在处于绝对零度的系统。目前所知的最接近绝对零度的物质是在实验室里人为创造出来的。科学家通过激光制冷手段可以将处于气体状态的原子冷却到极低温,并因此实现玻色-爱因斯坦凝聚。2003年,麻省理工学院的实验室将钠原子降到450pK(1pK是10的负12次方开尔文度),是现在的最低温记录。后来的统计物理学研究为熵作出了更为清楚的定义:熵值描述的是系统在可能占有的微观状态上的分布程度。如果一个系统只占有小部分的状态,比如固体中分子只在固定的晶格点附近振动或者按照颜色站好队的水,它的熵值便比较低。反之,流体中分子可以完全自由运动;不同颜色融合后的分子间的分布组合也大大增加,其熵值也就比较高。熵还为温度本身提供了一个更为严格的定义。因为热运动并不是系统唯一的能量来源,把温度简单地看作热能的衡量并不准确。物理系学中的温度是改变一个系统的熵所需要的能量。在不同的状态下,将一个系统的熵改变一定量时所需要的能量是不同的,而这正是系统温度的不同。在我们日常的世界中,能量和熵的变化总是步调一致的,系统在获得能量的同时熵会增加。物体获得能量(热量)后会膨胀,扩大状态空间,甚至从固体融化成液体、进而蒸发为气体,这都是趋向无序的过程。反之,能量减少时熵亦会减小。这样得出的温度数值随状态变化虽然不同,却永远是正数,也就是绝对零度以上。然而,在量子世界里,我们却可以遇到甚至构造出一些奇异的体系,与日常经验不符乃至相反。在经典世界里,随着能量的增加,系统中粒子动能会越来越大,没有止境。它们能占据的态也因此越来越多,更加无序,所以系统的熵会随着能量增加。而量子世界中的粒子只能占据量子化的能量态。随着能量的增加,越来越多的粒子会进入高能量态。绝大多数的量子系统有着无止境的高能量态,粒子占据越多的高能量态,系统的熵越高。这与经典系统没有区别。的确,量子系统在高温条件下通常可以用经典物理描述。但在非常特殊的情况下,人们可以设计出只存在有限能级的量子系统。在这样的系统中,粒子所能占据的能量态有限。能量增加的结果使得越来越多的粒子集中在最高的能级上。这样集中的结果是系统趋于有序,熵反而减少了。如果所有的粒子都集中在最高能级上,系统会变得完全有序,熵因此变成零——与所有粒子都集中在最低能量态的经典意义上的绝对零度情形一样,只是完全颠倒了。因为能量增加导致熵减少,按照“改变系统的熵所需要的能量”的定义,该系统的温度是负数!这个意义上的负温度虽然匪夷所思,它其实是很早就被科学家认识的。它之所以稀有,是因为它在经典物理世界中不可能存在,在量子世界中也需要非常特殊的条件才可能。这样的负温度系统早在1951年就被物理学家在核子自旋系统中证实了。差不多同时,科学家发明了激光。他们选择合适的材料和条件,使得其中原子只有少数几个能级可供电子跃迁,然后输入能量将大量原子激发到其中的高能激发态,使得处于高能量态的原子多于基态。这样的原子体系便处于负温度状态。而这些原子步调一致地从激发态跃迁回基态时所付出的光子便成为激光束。核自旋和激光系统都不是“纯粹”的负温度系统。它们只是在特定的自由度(自旋和原子能级)上实现了负温度,而原子本身所处的还是平常的正温度环境。今年德国物理学家所实现的突破便在于他们把一些经过激光制冷的原子通过调制整体地进入了负温度状态,这些原子完全处于负温度,不再另有正温度环境。但这样实现的状态非常不稳定,只能存活非常短暂的时间。如果负温度系统接触到正温度系统是会发生什么样的现象?处于负温度状态的系统是不稳定的,会自发的释放能量。激光束正是这种能量释放的表现。它们接触到正温度系统时会自发地将能量传递给对方。正温度系统接收热量后能量和熵都会增加,温度增高。同时负温度系统在损失能量时(如果没有外来能量补充的话)熵也会增加,直到失去负温度状态。因此整个系统正像热力学定律所要求的那样向熵增加的方向演变。因为这个过程中能量(热量)是从负温度一方传向正温度一方,负温度并不比正温度更“冷”,而是比任何正温度还要“热”——这正是一个颠倒了的物理世界。来源:搜狐

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功