ansys热分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/37第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。稳态传热用于分析稳定的热载荷对系统或部件的影响。通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。当然,如果在分析中考虑辐射,则分析也是非线性的。3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。有关单元的详细描述请参考《ANSYSElementReference》,该手册以单元编号来讲述单元,第一个单元是LINK1。单元名采用大写,所有的单元都可用于稳态和瞬态热分析。其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。这些热分析单元如下:表3-1二维实体单元单元维数形状及特点自由度PLANE35二维六节点三角形单元温度(每个节点)PLANE55二维四节点四边形单元温度(每个节点)PLANE75二维四节点谐单元温度(每个节点)PLANE77二维八节点四边形单元温度(每个节点)PLANE38二维八节点谐单元温度(每个节点)2/37表3-2三维实体单元单元维数形状及特点自由度SOLID70三维八节点六面体单元温度(每个节点)SOLID87三维十节点四面体单元温度(每个节点)SOLID90三维二十节点六单元温度(每个节点)表3-3辐射连接单元单元维数形状及特点自由度LINK31二维或三维二节点线单元温度(每个节点)表3-4传导杆单元单元维数形状及特点自由度LINK32二维二节点线单元温度(每个节点)LINK33三维二节点线单元温度(每个节点)表3-5对流连接单元单元维数形状及特点自由度LINK34三维二节点线单元温度(每个节点)表3-6壳单元单元维数形状及特点自由度SHELL57三维四节点四边形单元温度(每个节点)表3-7耦合场单元单元维数形状及特点自由度PLANE13二维四节点热-应力耦合单元温度、结构位移、电位、磁矢量位CONTACT48二维三节点热-应力接触单元温度、结构位移CONTACT49三维热-应力接触单元温度、结构位移FLUID116三维二或四节点热-流单元温度、压力SOLID5三维八节点热-应力和热-电单元温度、结构位移、电位、磁标量位3/37SOLID98三维十节点热-应力和热-电单元温度、结构位移、电位、磁矢量位PLANE67二维四节点热-电单元温度、电位LINK68三维两节点热-电单元温度、电位SOLID69三维八节点热-电单元温度、电位SHELL157三维四节点热-电单元温度、电位表3-8特殊单元单元维数形状及特点自由度MASS71一维到三维一个节点的质量单元温度COMBINE37一维四节点控制单元温度、结构位移、转动、压力SURF151二维二到四节点面效应单元温度SURF152三维四到九节点面效应单元温度MATRIX50由包括在超单元中的单元类型决定没有固定形状的矩阵或辐射矩阵超单元由包括在超单元中的单元类型决定INFIN9二维二节点无限边界单元温度、磁矢量位INFIN47三维四节点无限边界单元温度、磁矢量位COMBINE14一维到三维两节点弹簧-阻尼单元温度、结构位移、转动、压力COMBINE39一维两节点非线性弹簧单元温度、结构位移、转动、压力COMBINE40一维两节点组合单元温度、结构位移、转动、压力.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果4/37以下的内容将讲述如何执行上面的步骤。首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。最后,本章提供了该实例等效的命令流文件。3.4建模建立一个模型的内容包括:首先为分析指定jobname和title;然后在前处理器(PREP7)中定义单元类型,单元实常数,材料属性以及建立几何实体。《ANSYSModelingandMeshingGuide》中对本部分有详细说明。对于热分析有:定义单元类型命令:ETGUI:MainMenuPreprocessorElementTypeAdd/Edit/Delete定义固定材料属性命令:MPGUI:MainMenuPreprocessorMaterialPropsMaterialModelsThermal定义温度相关的材料属性,首先要定义温度表,然后定义对应的材料属性值。通过下面的方法定义温度表命令:MPTEMP或MPTEGN,然后定义对应的材料属性,使用MPDATAGUI:MainMenuPreprocessorMaterialPropsMaterialModelsThermal对于温度相关的对流换热系数也是通过上述的GUI路径和命令来定义的。注意--如果以多项式的形式定义了与温度相关的膜系数,则在定义其它具有固定属性的材料之前,必须定义一个温度表。创建几何模型及划分划分网格的过程,请参阅《ANSYSModelingandMeshingGuide》3.5施加荷载和求解在这一步骤中,必须指定所要进行的分析类型及其选项,对模型施加荷载,定义荷载选项,最后执行求解。3.5.1指定分析类型5/37在这一步中,可以如下指定分析类型:GUI:MainMenuSolutionNewAnalysisSteady-state(static)命令:ANTYPE,STATIC,NEW如果是重新启动以前的分析,比如,附加一个荷载。命令:ANTYPE,STATIC,rest。(条件是先前分析的jobname.ESAV、jobname.DB等文件是可以利用的)3.5.2施加荷载可以直接在实体模型(点、线、面、体)或有限元模型(节点和单元)上施加载荷和边界条件,这些载荷和边界条件可以是单值的,也可以是用表格或函数的方式来定义复杂的边界条件,详见《ANSYS基本分析过程指南》。可以定义以下五种热载荷:3.5.2.1恒定的温度(TEMP)通常作为自由度约束施加于温度已知的边界上。3.5.2.2热流率(HEAT)--------------可以的话,就避免了吧,它是用于提高精度的补充。热流率作为节点集中载荷,主要用于线单元(如传导杆、辐射连接单元等)模型中,而这些线单元模型通常不能直接施加对流和热流密度载荷。如果输入的值为正,表示热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上,则温度约束条件优先。注意--如果在实体单元的某一节点上施加热流率,则此节点周围的单元应该密一些;特别是与该节点相连的单元的导热系数差别很大时,尤其要注意,不然可能会得到异常的温度值。因此,只要有可能,都应该使用热生成或热流密度边界条件,这些热荷载即使是在网格较为粗糙的时候都能得到较好的结果。3.5.2.3对流(CONV)对流边界条件作为面载施加于分析模型的外表面上,用于计算与模型周围流体介质的热交换,它仅可施加于实体和壳模型上。对于线单元模型,可以通过对流杆单元LINK34来定义对流。3.5.2.4热流密度(HEAT)热流密度也是一种面载荷。当通过单位面积的热流率已知或通过FLOTRANCFD的计算可得到时,可以在模型相应的外表面或表面效应单元上施加热流密度。如果输入的值为正,表示热流流入单元。热流密度也仅适用于实体和壳单元。6/37单元的表面可以施加热流密度也可以施加对流,但ANSYS仅读取最后施加的面载进行计算。3.5.2.5热生成率(HGEN)热生成率作为体载施加于单元上,可以模拟单元内的热生成,比如化学反应生热或电流生热。它的单位是单位体积的热流率。下表总结了在热分析中的载荷类型:表3-9热荷载类型载荷类型类别命令族GUI路径温度(TEMP)约束DMainMenuSolution-Loads-Apply-Thermal-Temperature热流率(HEAT)力FMainMenuSolution-Loads-Apply-Thermal-HeatFlow对流(CONV),热流密度(HFLUX)面载荷SFMainMenuSolution-Loads-Apply-Thermal-ConvectionMainMenuSolution-Loads-Apply-Thermal-HeatFlux热生成率(HGEN)体载荷BFMainMenuSolution-Loads-Apply-Thermal-HeatGenerat下表详细列出了热分析中用于施加载荷,删除载荷,对载荷进行操作、列表的所以命令:表3-10热荷载相关的命令载荷类型实体或有限元模型实体施加删除列表显示运算设置温度实体模型关键点DKDKDELEDKLISTDTRAN--有限元模型节点DDDELEDLISTDSCALEDCUMTUNIF热流率实体模型关键点FKFKDELEFKLISTFTRAN--7/37有限元模型节点FFDELEFLISTFSCALEFCUM对流,热流密度实体模型线SFLSFLDELESFLLISTSFTRANSFGRAD实体模型面SFASFADELESFALISTSFTRANSFGRAD有限元模型节点SFSFDELESFLISTSFSCALESFGRADSFCUM有限元模型单元SFESFEDELESFELISTSFSCALESFBEAMSFCUMSFFUNSFGRAD生热率实体模型关键点BFKBFKDELEBFKLISTBFTRAN--实体模型线BFLBFLDELEBFLLISTBFTRAN--实体模型面BFABFADELEBFALISTBFTRAN--实体模型体BFVBFVDELEBFVLISTBFTRAN--有限元模型节点BFBFDELEBFLISTBFSCALEBFCUM单元BFEBFEDELEBFELISTBFSCALEBFCUM3.5.3采用表格和函数边界条件除了一般的使用表格来定义边界条件的方法,本节讨论热分析中特有的一些问题。关于定义表参数的详细叙述,请参考《ANSYSAPDLProgrammer’sGuide》。本节内容对单元类型没有特别的限制。下表列出了热分析中能够用于每一种边界条件的自变量:表3-11荷载边界条件及其自变量热边界条件命令族自变量固定温度DTIME,X,Y,Z热流FTIME,X,Y,Z,TEMP对流换热系数(对流)SFTIME,X,Y,Z,TEMP,VELOCITY环境温度(对流)SFTIME,X,Y,Z8/37热流密度SFTIME,X,Y,Z,TEMP热生成BFTIME,X,Y,Z,TEMP流率SFETIME压力DTIME,X,Y,Z后面有一个例题详细介绍在一个稳态热分析中如何采用表格边界条件。为了使用更加灵活的热传导系数,可以使用函数的方式来定义边界条件。有关这种用法的详细说明,可以参考《ANSYSBasicAnalysisProceduresGuide》。除了上述自变量外,函数边界条件还可用下面的参数作为函数的自变量:表面温度(TS)(SURF151、SURF152单元的表面温度)密度()(材料属性DENS)比热(材料属性C)导热率(材料属性kxx)导热率(材料属性kyy)导热率(材料属性kzz)粘度(材料属性μ)辐射率(材料属性ε)3.5.4定义载荷步选项对于一个热分析,可以确定通用选项、非线性选项以及输出控制。下表列出了热分析中可能用到的载荷步选项:表3-12分析中的载荷步选项选项命令GUI路径通用选项时间TIMEMainMenuSolution

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功