Adsiuen考研数学(三)公式大全

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。数学公式导数公式:基本积分表:等价无穷小量代换时,有:当0xaxxaaactgxxxtgxxxxctgxxtgxaxxln1)(logln)(csc)(cscsec)(seccsc)(sec)(22222211)(11)(11)(arccos11)(arcsinxarcctgxxarctgxxxxxCaxxaxdxCshxchxdxCchxshxdxCaadxaCxctgxdxxCxdxtgxxCctgxxdxxdxCtgxxdxxdxxx)ln(lncsccscsecseccscsinseccos22222222CaxxadxCxaxaaxadxCaxaxaaxdxCaxarctgaxadxCctgxxxdxCtgxxxdxCxctgxdxCxtgxdxarcsinln21ln211csclncscseclnsecsinlncosln22222222CaxaxaxdxxaCaxxaaxxdxaxCaxxaaxxdxaxInnxdxxdxInnnnarcsin22ln22)ln(221cossin222222222222222222222020xx~sinxx~tanxx~arcsinxx~arctanaxaxln~1xex~1axxa~1xnxn1~11xx~1ln221~cos1xx两个重要极限:高阶导数公式nmnmxnmmmx)1)......(1(!nxnnnxnxaaalnaxnnaxeae2sinsinnxxn2coscosnxxnxnxexnxe1!11nnnaxnax——莱布尼兹(Leibniz)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(nkknnnnnkkknknnuvvukknnnvunnvnuvuvuCuv泰勒公式:ex=1+x+!22x+!33x+…+!nxn+…sinx=x-!33x+!55x-!77x+…+)!12()1(12nxnn+…cosx=1-!22x+!44x-!66x+…+)!2()1(2nxnn+…ln(1+x)=x-22x+33x-44x+…+)!1()1(1nxnn+…tan-1x=x-33x+55x-77x+…+)12()1(12nxnn+…...590457182818284.2)11(lim1sinlim0exxxxxx(1+x)r=1+rx+!2)1(rrx2+!3)2)(1(rrrx3+…-1x1中值定理与导数应用:拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:xxFfaFbFafbfabfafbf)(F)()()()()()())(()()(多元函数微分法及应用zyzxyxyxyxyxFFyzFFxzzyxFdxdyFFyFFxdxydFFdxdyyxFdyyvdxxvdvdyyudxxuduyxvvyxuuxvvzxuuzxzyxvyxufztvvztuuzdtdztvtufzyyxfxyxfdzzdzzudyyudxxududyyzdxxzdz,  , 隐函数+,  ,  隐函数隐函数的求导公式:    时,,当        :多元复合函数的求导法全微分的近似计算:   全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22多元函数的极值及其求法:       不确定时值时,      无极为极小值为极大值时,则:  ,令:设,00),(,0),(,00),(,),(,),(0),(),(22000020000000000BACBACyxAyxABACCyxfByxfAyxfyxfyxfyyxyxxyx常数项级数:是发散的调和级数:等差数列:等比数列:nnnnqqqqqnn1312112)1(32111112级数审敛法:散。存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法nnnnnnnnnnsuuusUUulim;3111lim2111lim1211。的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim)0,(nnnnnnnnurrusuuuuuuuuuuu绝对收敛与条件收敛:时收敛1时发散p  级数:  收敛;  级数:收敛;发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121pnpnnnuuuuuuuupnnnn幂级数:0010)3(lim)3(1111111221032RRRaaaaRRxRxRxRxaxaxaaxxxxxxxnnnnnnnn时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于  函数展开成幂级数:nnnnnnnnnxnfxfxffxfxRxfxxnfRxxnxfxxxfxxxfxf!)0(!2)0()0()0()(00lim)(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:一些函数展开成幂级数:)()!12()1(!5!3sin)11(!)1()1(!2)1(1)1(121532xnxxxxxxxnnmmmxmmmxxnnnm      一阶线性微分方程:)1,0()()(2))((0)(,0)()()(1)()()(nyxQyxPdxdyeCdxexQyxQCeyxQxQyxPdxdyndxxPdxxPdxxP,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:全微分方程:通解。应该是该全微分方程的,,其中:分方程,即:中左端是某函数的全微如果CyxuyxQyuyxPxudyyxQdxyxPyxdudyyxQdxyxP),(),(),(0),(),(),(0),(),(二阶微分方程:时为非齐次时为齐次,0)(0)()()()(22xfxfxfyxQdxdyxPdxyd二阶常系数齐次线性微分方程及其解法:型为常数;型,为常数,]sin)(cos)([)()()(,)(xxPxxPexfxPexfqpxfqyypynlxmx二阶常系数非齐次线性微分方程2122,)(2,,(*)0)(1,0(*)rryyyrrqprrqpqyypy式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:为常数;,其中式的通解:出的不同情况,按下表写、根据(*),321rr的形式,21rr(*)式的通解两个不相等实根)04(2qpxrxrececy2121两个相等实根)04(2qpxrexccy1)(21一对共轭复根)04(2qp242221pqpirir,,)sincos(21xcxceyx

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功