ANSYSWORKBENCH疲劳分析指南第二章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ANSYSWORKBENCH疲劳分析指南第二章2.1基本情况进行疲劳分析是基于线性静力分析,所以不必对所有的步骤进行详尽的阐述。疲劳分析是在线性静力分析之后,通过设计仿真自动执行的。对疲劳工具的添加,无论在求解之前还是之后,都没有关系,因为疲劳计算不并依赖应力分析计算。尽管疲劳与循环或重复载荷有关,但使用的结果却基于线性静力分析,而不是谐分析。尽管在模型中也可能存在非线性,处理时就要谨慎了,因为疲劳分析是假设线性行为的。在本章中,将涵盖关于恒定振幅、比例载荷的情况。而变化振幅、比例载荷的情况和恒定振幅、非比例载荷的情况,将分别在以后的第三和四章中逐一讨论。2.1.1疲劳程序下面是疲劳分析的步骤,用斜体字体所描述的步骤,对于包含疲劳工具的应力分析是很特殊的:模型指定材料特性,包括S-N曲线;定义接触区域(若采用的话);定义网格控制(可选的);包括载荷和支撑;(设定)需要的结果,包括Fatiguetool;求解模型;查看结果。在几何方面,疲劳计算只支持体和面,线模型目前还不能输出应力结果,所以疲劳计算对于线是忽略的,线仍然可以包括在模型中以给结构提供刚性,但在疲劳分析并不计算线模型。2.1.2材料特性由于有线性静力分析,所以需要用到杨氏模量和泊松比:如果有惯性载荷,则需要输入质量密度;如果有热载荷,则需要输入热膨胀系数和热传导率;如果使用应力工具结果(StressToolresult),那么就需要输入应力极限数据,而且这个数据也是用于平均应力修正理论疲劳分析。疲劳模块也需要使用到在工程数据分支下的材料特性当中S-N曲线数据:数据类型在“疲劳特性”(“FatigueProperties”)下会说明;S-N曲线数据是在材料特性分支条下的“交变应力与循环”(“AlternatingStressvs.Cycles”)选项中输入的。如果S-N曲线材料数据可用于不同的平均应力或应力比下的情况,那么多重S-N曲线也可以输入到程序中。2.1.3疲劳材料特性添加和修改疲劳材料特性:在材料特性的工作列表中,可以定义下列类型和输入的S-N曲线,插入的图表可以是线性的(“Linear”)、半对数的(“Semi-Log”即linearforstress,logforcycles)或双对数曲线(“Log-Log”)。记得曾提到的,S-N曲线取决于平均应力。如果S-N曲线在不同的平均应力下都可适用的,那么也可以输入多重S-N曲线,每个S-N曲线可以在不同平均应力下直接输入,每个S-N曲线也可以在不同应力比下输入。可以通过在“MeanValue”上点击鼠标右键添加新的平均值来输入多条S-N曲线。2.1.4疲劳特征曲线材料特性信息可以保存XML文件或从XML文件提取,保存材料数据文件,在material条上按右键,然后用“Export…”保存成XML外部文件,疲劳材料特性将自动写到XML文件中,就像其他材料数据一样。一些例举的材料特性在如下安装路径下可以找到:C:\ProgramFiles\AnsysInc\v80\AISOL\CommonFiles\Language\en-us\EngineeringData\Materials,“Aluminum”和“StructuralSteel”的XML文件,包含有范例疲劳数据可以作为参考,疲劳数据随着材料和测试方法的不同而有所变化,所以很重要一点就是,用户要选用能代表自己部件疲劳性能的数据2.1.5接触区域接触区域可以包括在疲劳分析中,注意,对于在恒定振幅、成比例载荷情况下处理疲劳时,只能包含绑定(Bonded)和不分离(No-Separation)的线性接触,尽管无摩擦、有摩擦和粗糙的非线性接触也能够包括在内,但可能不再满足成比例载荷的要求。例如,改变载荷的方向或大小,如果发生分离,则可能导致主应力轴向发生改变;如果有非线性接触发生,那么用户必须小心使用,并且仔细判断;对于非线性接触,若是在恒定振幅的情况下,则可以采用非比例载荷的方法代替计算疲劳寿命。2.1.6载荷与支撑能产生成比例载荷的任何载荷和支撑都可能使用,但有些类型的载荷和支撑不造成比例载荷:螺栓载荷对压缩圆柱表面侧施加均布力,相反,圆柱的相反一侧的载荷将改变;预紧螺栓载荷首先施加预紧载荷,然后是外载荷,所以这种载荷是分为两个载荷步作用的过程;压缩支撑(CompressionOnlySupport)仅阻止压缩法线正方向的移动,但也不会限制反方向的移动,像这些类型的载荷最好不要用于恒定振幅和比例载荷的疲劳计算。2.1.7(设定)需要的结果对于应力分析的任何类型结果,都可能需要用到:应力、应变和变形–接触结果(如果版本支持);应力工具(StressTool)。另外,进行疲劳计算时,需要插入疲劳工具条(FatigueTool):在Solution子菜单下,从相关的工具条上添加“ToolsFatigueTool”,FatigueTool的明细窗中将控制疲劳计算的求解选项;疲劳工具条(FatigueTool)将出现在相应的位置中,并且也可添加相应的疲劳云图或结果曲线,这些是在分析中会被用到的疲劳结果,如寿命和破坏。2.1.8需要的结果在疲劳计算被详细地定义以后,疲劳结果可下在FatigueTool下指定;等值线结果(Contour)包括Lifes(寿命),Damage(损伤),SafetyFactor(安全系数),BiaxialityIndication(双轴指示),以及EquivalentAlternatingStress(等效交变应力);曲线图结果(graphresults))仅包含对于恒定振幅分析的疲劳敏感性(fatiguesensitivity);这些结果的详细分析将只做简短讨论。2.2FatigueTool2.2.1载荷类型当FatigueTool在求解子菜单下插入以后,就可以在细节栏中输入疲劳说明:载荷类型可以在“Zero-Based”、“FullyReversed”和给定的“Ratio”之间定义;也可以输入一个比例因子,来按比例缩放所有的应力结果。2.2.2平均应力影响在前面曾提及,平均应力会影响S-N曲线的结果.而“AnalysisType”说明了程序对平均应力的处理方法:“SN-None”:忽略平均应力的影响“SN-MeanStressCurves”:使用多重S-N曲线(如果定义的话)“SN-Goodman,”“SN-Soderberg,”和“SN-Gerber”:可以使用平均应力修正理论。如果有可用的试验数据,那么建议使用多重S-N曲线(SN-MeanStressCurves);但是,如果多重S-N曲线是不可用的,那么可以从三个平均应力修正理论中选择,这里的方法在于将定义的单S-N曲线“转化”到考虑平均应力的影响:1.对于给定的疲劳循环次数,随着平均应力的增加,应力幅将有所降低;2.随着应力幅趋近零,平均应力将趋近于极限(屈服)强度;3.尽管平均压缩应力通常能够提供很多的好处,但保守地讲,也存在着许多不利的因素(scaling=1=constant)。Goodman理论适用于低韧性材料,对压缩平均应力没能做修正,Soderberg理论比Goodman理论更保守,并且在有些情况下可用于脆性材料,Gerber理论能够对韧性材料的拉伸平均应力提供很好的拟合,但它不能正确地预测出压缩平均应力的有害影响,如下图所示。缺省的平均应力修正理论可以从“ToolsControlPanel:FatigueAnalysisType”中进行设置–如果存在多重S-N曲线,但用户想要使用平均应力修正理论,那么将会用到在σm=0或R=-1的S-N曲线。尽管如此,这种做法并不推荐。2.2.3强度因子除了平均应力的影响外,还有其它一些影响S-N曲线的因素,这些其它影响因素可以集中体现在疲劳强度(降低)因子Kf中,其值可以在FatigueTool的细节栏中输入,这个值应小于1,以便说明实际部件和试件的差异,所计算的交变应力将被这个修正因子Kf分开,而平均应力却保持不变。2.2.4应力分析在第一章中,注意到疲劳试验通常测定的是单轴应力状态,必须把单轴应力状态转换到一个标量值,以决定某一应力幅下(S-N曲线)的疲劳循环次数。FatigueTool细节栏中的应力分量(“StressComponent”)允许用户定义应力结果如何与疲劳曲线S-N进行比较。6个应力分量的任何一个或最大剪切应力、最大主应力、或等效应力也都可能被使用到。所定义的等效应力标示的是最大绝对主应力,以便说明压缩平均应力。2.3求解疲劳分析疲劳计算将在应力分析实施完以后自动地进行,与应力分析计算相比,恒定振幅情况的疲劳计算通常会快得多。如果一个应力分析已经完成,那么仅选择Solution或FatigueTool分支并点击Solve,便可开始疲劳计算。在求解菜单中(solutionbranch)的工作表将没有输出显示,疲劳计算在Workbench中进行,ANSYS的求解器不会执行分析中的疲劳部分,疲劳模块没有使用ANSYS/POST1的疲劳命令(FSxxxx,FTxxxx)。2.4查看疲劳结果对于恒定振幅和比例载荷情况,有几种类型的疲劳结果供选择:Life(寿命):等值线显示由于疲劳作用直到失效的循环次数,如果交变应力比S-N曲线中定义的最低交变应力低,则使用该寿命(循环次数)(在本例中,S-N曲线失效的最大循环次数是1e6,于是那就是最大寿命。Damage(损伤):设计寿命与可用寿命的比值,设计寿命在细节栏(Detailsview)中定义,设计寿命的缺省值可通过下面进行定义“ToolsControlPanel:FatigueDesignLife。SafetyFactor(安全系数):安全系数等值线是关于一个在给定设计寿命下的失效,设计寿命值在细节栏(Detailsview)输入,给定最大安全系数SF值是15。BiaxialityIndication:应力双轴等值线有助于确定局部的应力状态,双轴指示(Biaxialityindication)是较小与较大主应力的比值(对于主应力接近0的被忽略)。因此,单轴应力局部区域为B值为0,纯剪切的为-1,双轴的为1。等效交变应力(EquivalentAlternatingStress):等值线在模型上绘出了部件的等效交变应力,它是基于所选择应力类型,在考虑了载荷类型和平均应力影响后,用于询问(query)S-N曲线的应力。疲劳敏感性(FatigueSensitivity):一个疲劳敏感曲线图显示出部件的寿命、损伤或安全系数在临界区域随载荷的变化而变化,能够输入载荷变化的极限(包括负比率),曲线图的缺省选项,“ToolsmenuOptions…Simulation:FatigueSensitivity”。任何疲劳选项的范围可以是选定的部件(parts)和/或部件的表面,收敛性可用于等值线结果。收敛和警告对疲劳敏感性图是无效的,因为这些图提供关于载荷的敏感性(例如,没有为了收敛目的而指定的标量选项)。疲劳工具也可以与求解组合一起使用,在求解组合中,多重环境可能被组合。疲劳计算将基于不同环境的线性组合的结果。2.5总结a建立一个应力分析(线性,比例载荷)b定义疲劳材料特性,包括S-N曲线c定义载荷类型和平均应力影响的处理d求解和后处理疲劳结果Solveandpostprocessfatigueresults

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功