bu-gjkpf高一数学典型例题分析数列的求和

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

、.~①我们‖打〈败〉了敌人。②我们‖〔把敌人〕打〈败〉了。专题研究:数列的求和·例题解析【例1】求下列数列的前n项和Sn:(1)(2)13(3)11111122143181223132313231323121214121412234562121,,,…,,…;,,,…,,…;,+,+,…,+++…+,….()nnnnn解(1)S=112=(123n)n2143181212141812…+++…++…()()nnn=n(n+1)2=1121121121212()()nnnn+(2)S=13=(13+13++13)+(23+23++23)n32n-1242n2313231323234212………nn=13()()()1131132311311358113222222nnn(3)先对通项求和a=1S=(222)(1+14++12)nnn-11214122121211…∴++…+-+…nn=2n(1+14++12)=2n2n-1-+…-+12121n【例2】求和:(1)11+123+134+(2)11(3)12···…···…···…2115137159121235158181113132nnnnnn()()()()()解(1)1n(n+1)111111212131314111nnSnnn∴…()()()()1111nnn(2)1(2n1)(2n+3)S=n141211231411513171519123121121123()[]nnnnnn∴…=141131211234532123[]()()()nnnnnn(3)1(3n1)(3n+2)S=13n131311321215151818111131132()[()()()()]nnnn∴…=13()1213264nnn【例3】求下面数列的前n项和:1147(3n2)+,+,+,…,+-,…11121aaan分析将数列中的每一项拆成两个数,一个数组成以为公比的等1a比数列,另一个数组成以3n-2为通项的等差数列,分别求和后再合并.解设数列的通项为an,前n项和为Sn则+∴…++++…+-a=1a(3n2)S=[147(3n2)]nn1n()111121aaan当时,+·当≠时,a=1S=na1S=11a11annn[()]()()1322321322131221nnnnnnaaannnnn说明等比数列的求和问题,分q=1与q≠1两种情况讨论.【例4】a=k(kN*)aaak设++…+∈,则数列,,,12357222123…的前n项之和是[]ABCD....613161612nnnnnnnn()()解bb=nn设数列,,,…,的通项为.则35721123aaanan又∵++…+++∴a=12n=n(n1)(2n1)b=6n(n+1)=6(1n1n+1)n222n16数列{bn}的前n项和Sn=b1+b2+…+bn=6=6=6nn+1(A)[()()]()1121311213111111……选.nnnn【例5】求在区间[a,b](b>a,a,b∈N)上分母是3的不可约分数之和.解法一[ab]3a1a2b1区间,上分母为的所有分数是,,,+,,,+,…,-,,,它是以为首项,以为公差的等差数列.33313323343353323313333313aaaaabbba项数为-+,其和-++3b3a1S=12(3b3a1)(ab)其中,可约分数是a,a+1,a+2,…,b其和′-++S=12(ba1)(ab)故不可约分数之和为SS=12(ab)[(3b3a1)(ba1)]-′+-+--+=b2-a2解法二∵…S=3a+13+3a+23+3a+43+3a+53++3b23+3b13∴++++++++…+-+-而又有-+-+-+-+…++++S=(a)(a)(a)(a)(b)(b)S=(b)(b)(b)(b)(a)(a)132343532313132343532313两式相加:2S=(a+b)+(a+b)+…+(a+b)其个数为以3为分母的分数个数减去可约分数个数.即3(b-a)+1-(b-a+1)=2(b-a)∴2S=2(b-a)(a+b)∴S=b2-a2【例6】求下列数列的前n项和Sn:(1)a,2a2,3a3,…,nan,…,(a≠0、1);(2)1,4,9,…,n2,…;(3)1,3x,5x2,…,(2n-1)xn-1,…,(x≠1)(4)1224382,,,…,,….nn解(1)Sn=a+2a2+3a3+…+nan∵a≠0∴aSn=a2+2a3+3a4+…+(n-1)an+nan+1Sn-aSn=a+a2+a3+…+an-nan+1∵a≠1∴()()()()111111121aSaaanaSaaanaannnnnn(2)Sn=1+4+9+…+n2∵(a+1)3-a3=3a2+3a+1∴23-13=3×12+3×1+133-23=3×22+3×2+143-33=3×32+3×3+1……n3-(n-1)3=3(n-1)2+3(n-1)+1(n+1)3-n3=3n2+3n+1把上列几个等式的左右两边分别相加,得(n+1)3-13=3(12+22+…+n2)+3(1+2+…+n)+n=3(123n)n2222+++…+++312nn()∴12+22+32+…+n2=[(n1)1n]=[n3n3nn]3321331213312+---++--nnnn()()=n(2n3n1)=n(n1)(2n1)21616++++(3)∵Sn=1+3x+5x2+7x3+…+(2n-1)xn-1∴xSn=x+3x2+5x3+…+(2n-3)xn-1+(2n-1)xn两式相减,得(1-x)Sn=1+2x(1+x+x2+…+xn-2)-(2n-1)xn=1(2n1)x=(2n1)xS=(2n1)xnn+1nn+1--+∴2112111211112xxxnxxxnxxxnnn()()()()()()(4)S=12n∵……22322121222322232341nSnnnn两式相减,得121212121221211211222311Snnnnnnn…()112212211nnnnnn∴-S=2n说明求形如{an·bn}的数列的前n项和,若其中{an}成等差数列,{bn}成等比数列,则可采用推导等比数列求和公式的方法,即错位相减法,此方法体现了化归思想.【例7】{a}nSS=nnn设等差数列的前项和为,且,()an122n∈N*,若bn=(-1)n·Sn,求数列{bn}的前n项和Tn.分析求{bn}的前n项和,应从通项bn入手,关键在于求{an}的前n项和Sn,而由已知只需求{an}的通项an即可.解法一{a}S=n=1a=(a2)a=1nn1121∵是等差数列,当时,解得()an1212当时,+解得或-当时,++,由,解得或n=2aa=(a)a=3a=1n=3aaa=(a)a=3a=5a=122222123322331212-3,由a2=1,解得a3=1.又≥,∴-,-,舍S=0a=1a=3a=1()n233()an122即a1=1,a2=3,a3=5,∴d=2an=1+2(n-1)=2n-1Sn=1+3+5+…+(2n-1)=n2bn=(-1)n·Sn=(-1)n·n2Tn=-12+22-32+42-…+(-1)n·n2当n为偶数时,即n=2k,k∈N*Tn=(-12+22)+(-32+42)+…+[-(2k-1)2+(2k)2]=3+7+…+(4k-1)=[3+(4k1)]k2=(2k1)k=·+nn()12当n为奇数时,即n=2k-1,k∈N*Tn=-12+22-32+42-…-(2k-1)2=-12+22-32+42-…-(2k-1)2+(2k)2-(2k)2=(2k+1)k-(2k)2=-k(2k-1)=T=(1)nN*nS=(a+a)n2annn1nn-∴-·∈也可利用等差数列的前项和公式·,求.nnnn()()1212解法二n=1a=(a)a=1S=n(a+a)1121n1n取,则∴又可得:·12212122()()anann∵an≠-1∴an=2n-1以下同解法一.说明本题以“等差数列”这一已知条件为线索,运用方程思想,求数列{an}的通项an,在求数列{bn}的前n项和中,通过化简、变形把一般数列的求和问题转化为等差数列的求和问题.由于(-1)n的作用,在变形中对n须分两种情况讨论

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功