随机过程简史

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1/6HHaarrbbiinnIInnssttiittuutteeooffTTeecchhnnoollooggyy课课程程设设计计((论论文文))课程名称:应用随机过程设计题目:随机过程简史院系:电气工程学院班级:11S0104设计者:孙延博学号:11S001070指导教师:田波平设计时间:2011-10-23随机过程简史摘要本文简要地介绍了随机过程从20世纪初创立至今,100年的发展历程考察了导致随机过程产生的历史契机,以及早期数学家在这方面作出的杰出工作。并简要介绍了随机过程的概念,研究方法2/6和研究内容,在现代工程技术领域的应用。关键词:随机过程平稳随机过程平稳随机序列1.随机过程的概念研究方法及研究内容随机过程是现代概率论研究的一个重要分支。数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。数学上的随机过程可以简单的定义为一组随机变量,即指定一参数集,对于其中每一参数点t指定一个随机变量x(t)。如果回忆起随机变量自身就是一个函数,以ω表示随机变量x(t)的定义域中的一点,并以x(t,ω)表示随机变量在ω的值,则随机过程就由刚才定义的点偶(t,ω)的函数以及概率的分配完全确定。如果固定t,这个二元函数就定义一个ω的函数,即以x(t)表示的随机变量。如果固定ω,这个二元函数就定义一个t的函数,这是过程的样本函数。由于物理学生物学,通讯和控制管理科学等学科的需要随机过程逐步发展起来的。马尔柯夫最早研究了随机过程。研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、停时和随机微分方程等;另一类是分析的方法,其中用到测度轮、微分方程、半群理论、函数堆和希尔伯特空间等。实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔可夫过程、概率与位势及各种特殊过程的专题讨论等。中国学者在平稳过程、马尔科夫过程、鞅论、极限定理、随机微分方程等方面做出了较好的工作。2.随机过程的历史1900年,Bachelier在分析股票市场波动时.发现了随机过程的一个重过程——独立增量过程的特恻。1905年,物理学家Einstein在研究Brown运动时,也遇到了相同的过程.1923年,Wiener给出了Brown运动的数学描述-wiener过程。Lunbderg在1903年研究一个保险公司所承担索赔累计数的变化规律时.导出了另一类型的随机过程——Lundberg过程。而众所周知、应用甚广的Poisson过程是当所有得付出的索赔总数中每一笔数目都相同时的Lundberg过程。1909年,Erlang在研究电话业务时引入了Poisson过程,并被物理学家Rutherford和Geiger用于分析放射性蜕变。这些早期对随机过程的研究都是同实际问题紧密联系在一起的。虽然在数学上用了不太严密的方法,却表现出了直观处理这些概念和方法的绝妙能力。3/6系统地严密地研究随机过程始于本世纪30年代。1931年,柯尔莫哥洛夫发表了一篇极有影响的论文《概率论的解析方法》,他进行了一般性的马氏过程的研究。马氏过程为经典的马尔柯夫链概念的自然推广,得到著名的向前方程。这一工作为揭示概率论同二阶偏微分方程之间的联系莫定了基础。在这之前,物理学家Plank曾建立过抛物型方程同马氏链及直线上的马尔柯夫游动的联系,得到部分的结果。柯尔莫哥洛夫的结论更完善,并广泛地应用于物理生物,化学以及工程技术方面。时齐独立增量过程是拇尔莫哥格夫在1932年的工作中得到的。它使得wiener过程和Lunbdberg风险过程成为特例。1934年,苏联数学家辛欣发表了平稳过程的奠基性文章,而且指出当系统的过去的历史对未来发展有本质影响的情况下。马氏过程是不能描述的。平稳过程的发现为统计力学,气象和经济学等领域找到一个台适的数学模型,特别是为显示出周期性行为趋向的现象的研究以及应用于信息论开辟了前景。1944年.柯尔莫哥洛夫对离散时问的平稳过程进行了研究.发现具有二阶矩的所有随机变量组成一个Hilbert空间,而离散时间的随机过程就成为其中的一个点序列。对于随机变量的平稳序列,柯尔莫哥洛夫运用Hilbert空间理论,以一种简单的方法导出过去所有已知的结果。这一开创性的工作首次把Hilbert空间这种抽象理论用于随机变量和随机过程的研究.在实际中遇到的很多随机现象有如下的共同特性:它的未来的演变,在已知它目前状态的条件下与以往的状况无关。描述这种随时间推进的随机现象的演变模型就是马尔可夫过程。20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。近年来,鞅论方法也已渗透到马尔可夫过程的研究中,它与随机微分方程结合在一起,已成为目前处理多维扩散过程的工具。此外,马尔可夫过程与分析学中的位势论有密切的联系。对马尔可夫过程的研究,推动了位势理论的发展,并为研究偏微分方程提供了概率论的方法。最近十多年发展起来的吉布斯随机场和无穷粒子随机系统,是由于统计物理的需要而提出的。许多自然的和生产过程中的随机现象表现出某种平稳性。一种平稳性是过程在任意一些时刻上的联合概率分布随时间推移不变,这种平稳性称为严平稳性。严平稳过程的研究与遍历理论有密切的联系。如果上述对概率分布的要求放宽为仅对二阶相关矩的要求,即过程在任意两时刻上的协方4/6差随时间推移不变,则称这种平稳性为宽平稳性。关于宽平稳过程的研究,辛钦、柯尔莫哥洛夫和维纳等人运用傅里叶分析和泛函分析的工具,在40年代已经找出了过程的相关函数及过程本身的谱分解式,并且较完满地解决了有应用意义的预测问题。许多应用问题还要求根据观测数据去建立这些数据所来自的随机过程的模型。为此产生了时间序列分析这一课题,提出了宽平稳序列的自回归滑动平均(ARMA)模型以及一些非线性模型。鞅是另一类重要的随机过程。从20世纪30年代起,莱维等人就开始研究鞅序列,把它作为独立随机变量序列的部分和的推广。40年代到50年代初,杜布对鞅进行了系统的研究,得到有名的鞅不等式、停止定理和收敛定理等重要结果。1962年,p.a.迈耶解决了杜布提出的连续时间的上鞅分解为鞅及增过程之差的问题。在解决这个问题的过程中,出现了很多新鲜而深刻的概念,使鞅和随机过程一般理论的内容大大丰富起来。鞅的研究丰富了概率论的内容,并引起人们用它所提供的新方法新概念对概率论中许多经典的内容重新审议,把以往认为是复杂的东西纳入鞅论的框架而加以简化。此外,利用上鞅的分解定理,可以把伊藤清的对布朗运动的随机积分推广到对一般鞅乃至半鞅的随机积分;因而,更一般的随机微分方程的研究也随之发展。随机微分方程理论不仅可以用来研究马尔可夫过程,它还是解决滤波问题的必要工具。最近出现的流形上的随机微分方程又和微分几何及分析力学的研究发生了密切的联系。鞅论还对本学科以外的位势理论、调和分析及复变函数论等提供了有用的工具。点过程是从所谓计数过程发展出来的,它们的特点是,可用落在不相重叠的集合上的随机点数目的联合概率分布来刻画整个过程的概率规律。最基本的计数过程是泊松过程,1943年,c.帕尔姆将它作为最简单的输入流应用于研究电话业务问题;1955年,辛钦又以严密的数学观点作了整理和发展。随机分析是概率论中又一独立分支。对于随机变量和跹机过程的分析性质的研究始于Wiener1923年的工作.他将Brown运动的平方可积泛函按Hermit多项式展开,讨论了Brown运动的非线性泛函。1931年,柯尔莫哥洛夫在前面提到的文章中首次研究了马氏过程同二阶偏微分方程的联系。1942年,日率数学家Ito发表了一篇重要的论文,他首次研究了微分方积的随机积分理论。他从分析经典的热扩散过程给出了抛物型偏微分方程的一个路径积分表示”。1947年,物理学家Feynman在研究量子力学中的微分方程时,提出了一种“路径积分“理论。后来数学家MarkKao在这一方面做了大量出色的工怍,建立了概率理论同微分方程新的联系。50年代,Ito讨论了一维扩散过程。他的学生Ikede和Watanabe在随机微分方程和扩散过程方面作出了重要的工作。在60年代以前,点过程的研究主要限于泊松过程及其推广的过程。以后,由于大量实际问题的5/6需要以及随机测度论和现代鞅论的推动,进一步把实轴上的点过程(即计数过程)推广到一般的可分完备度量空间上,在内容和方法上都有根本性的进展。3.随机过程在工程技术的应用随机过程的发展史说明了理论与实际之间的密切关系。许多研究方向的提出,归根到底是有其实际背景的。反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。概率论作为数理统计学的理论基础是尽人皆知的。下面简略介绍一下概率论本身在各方面的应用情况。在物理学方面,高能电子或核子穿过吸收体时,产生级联(或倍增)现象,在研究电了-光子级联过程的起伏问题时,要用到随机过程,常以泊松过程、弗瑞过程或波伊亚过程作为实际级联的近似,有时还要用到更新过程(见点过程)的概念。当核子穿到吸收体的某一深度时,则可用扩散方程来计算核子的概率分布。物理学中的放射性衰变,粒子计数器,原子核照相乳胶中的径迹理论和原子核反应堆中的问题等的研究,都要用到泊松过程和更新理论。湍流理论以及天文学中的星云密度起伏、辐射传递等研究要用到随机场的理论。探讨太阳黑子的规律及其预测时,时间序列方法非常有用。化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题,自动催化反应,单分子反应,双分子反应及一些连锁反应的动力学模型等,都要以生灭过程(见马尔可夫过程)来描述。随机过程理论所提供的方法对于生物数学具有很大的重要性,许多研究工作者以此来构造生物现象的模型。研究群体的增长问题时,提出了生灭型随机模型,两性增长模型,群体间竞争与生尅模型,群体迁移模型,增长过程的扩散模型等等。有些生物现象还可以利用时间序列模型来进行预报。传染病流行问题要用到具有有限个状态的多变量非线性生灭过程。在遗传问题中,着重研究群体经过多少代遗传后,进入某一固定类和首次进入此固定类的时间,以及最大基因频率的分布等。许多服务系统,如电话通信,船舶装卸,机器损修,病人候诊,红绿灯交换,存货控制,水库调度,购货排队,等等,都可用一类概率模型来描述。这类概率模型涉及的过程叫排队过程,它是点过程的特例。排队过程一般不是马尔可夫型的。当把顾客到达和服务所需时间的统计规律研究清楚后,就可以合理安排服务点。在通信、雷达探测、地震探测等领域中,都有传递信号与接收信号的问题。传递信号时会受到噪声的干扰,为了准确地传递和接收信号,就要把干扰的性质分析清楚,然后采取办法消除干扰。这是信息论的主要目的。噪声本身是随机的,所以概率论是信息论研究中必不可少的工具。信息论中的滤波问题就是研究在接收信号时如何最大限度地消除噪声的干扰,而编码问题则是研究采取什6/6么样的手段发射信号,能最大限度地抵抗干扰。在空间科学和工业生产的自动化技术中需要用到信息论和控制理论,而研究带随机干扰的控制问题,也要用到概率论方法。参考文献1田波平•应用随机过程讲义2张红•数学简史•科学出版社

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功