1学院CO2气体保护焊单面焊双面成形系别专业班级姓名学号2目录第一部分、工艺简介……………………………………………………………2一、二氧化碳焊气体保护焊的特点……………………………………2二、对二氧化碳焊气体保护焊焊接参数的要求………………………6三、操作技巧……………………………………………………………8第二部分、船体用B级钢试验和技术数据………………………………11一、B级钢的制造工艺与过程…………………………………………11二、厚度公差…………………………………………………………11三、试样………………………………………………………………12四、外观检查和无损检测……………………………………………13五、缺陷的修整………………………………………………………13六、标志与证书………………………………………………………14第三部分、制定工艺…………………………………………………………17一、板板平对接半自动二氧化碳气体保护焊的特点………………15二、焊接操作工艺……………………………………………………16三、试件焊后检测方法及合格标准…………………………………19四、焊接工艺评定报告表……………………………………………21第四部分、钢质船体结构的对焊接工艺试验项目……………………25第五部分、认可焊接工艺的适用范围……………………………………28设计总结…………………………………………………………………………30致谢…………………………………………………………………………………31参考文献…………………………………………………………………………323二氧化碳气体保护焊单面焊双面成形毕业设计第一部分工艺简介一、二氧化碳气体保护焊的特点二氧化碳气体保护焊是用二氧化碳作为保护气体,依靠焊丝与焊件之间产生的电弧来熔化金属的一种气体保护焊方法。二氧化碳气体保护焊的焊接过程如图1-1所示。图1-1二氧化碳气体保护焊的焊接过程示意图1-焊丝盘2-送丝轮3-送丝机4-喷嘴5-导电嘴6-焊丝7-保护气体8-焊缝9-熔池10-焊件1、二氧化碳气体保护焊具有如下优点(1)采用明弧焊接明弧焊接熔池可见度好,便于观察,操作方便。(2)适用范围广焊丝直径小,可使用小焊接参数焊接,即可全位置焊接,也可以单面焊双面成形。(3)焊后变形小由于电弧热量集中,熔池体积小,热影响区窄,焊缝塑性好,焊件焊后变形小。(4)焊接成本低二氧化碳气体来源广、价格低,而且消耗的焊接电能少,所以成本低。(5)生产效率高二氧化碳气体保护焊的焊接电流密度大,使熔深增大,减少了焊接层数。因其焊后没有焊渣,多层焊时可不必中间清渣。单面焊双面成形可以窄间隙连续焊接,因此提高了焊接生产率。(6)抗锈能力强二氧化碳气体保护焊对铁锈的敏感性不大,因此焊缝中不易产4生气孔。而且焊缝含氢量低,抗裂性能好。2、二氧化碳气体保护焊存在的问题二氧化碳气体保护焊虽有很多优点,但也存在一些缺点,如使用大电流焊接时,焊缝表面成形较差,飞溅较多;不能焊接容易氧化的有色金属材料;很难用交流电源焊接及在有风的地方施焊等。二氧化碳气体保护焊在焊接过程中的问题主要存在与以下几方面:(1)氧化性及合金元素的烧损问题二氧化碳气体为活性气体,在电弧高温下,二氧化碳气体被分解而呈很强的氧化性,能使合金元素氧化烧损,降低焊缝的力学性能。因此,必须在焊接过程中采取有效的脱氧措施。一般采用高锰高硅焊丝是解决二氧化碳气体保护焊氧化问题的主要方法。但在生产实际中,采用小焊接参数或减小焊接电流与电弧电压之间的比值也有利于减少合金成分的烧损。对于单面焊双面成形,采用细焊丝和小焊接参数焊接,不但有利于减少合金成分的烧损,更有利于背面焊缝的成形。(2)气孔问题A、氢气孔氢的主要来源是焊丝、焊件表面的铁锈、水分和油污以及CO2气体中的水分。因此,为防止产生氢气孔,焊前要适当清除焊丝和焊件表面的杂质,并需对CO2气体进行提纯与干燥处理。具体方法是将CO2气瓶倒置,使水分向瓶口沉积,然后反复打开阀门进行排放,直到排清瓶内水分为止。B.一氧化碳气孔当焊丝中脱氧元素不足时,是大量FeO不能还原而溶于熔池金属中,在熔池结晶时发生下列反应:FeO+CFe+CO这样,如果熔池冷却太快,所生成的CO气体来不及析出,就可能形成气孔。所以应严格限制焊丝中的含碳量及加入足够的脱氧元素锰和硅来防止气孔。C、氮气孔氮气主要来源于空气,这和熔池保护不好有关。因此要求:焊前要检查气体流量是否正常,焊枪及气路有无漏气现象。焊接当中要经常清理喷嘴内的飞溅物,以使保护气流均匀通畅。(3).飞溅问题CO2气体保护焊产生飞溅的主要原因如下:A、由冶金反应引起的飞溅这种飞溅主要由于CO2在高温分解时所产生的体积膨5胀,熔滴和熔池中的碳被氧化生成的CO气体所引起的。此外,熔滴或熔池中产生的气泡及气体从熔滴内流出时剧烈膨胀等因素均可以引起飞溅。B、由斑点压力引起的飞溅这种飞溅主要取决于电弧的极性。但由于目前使用的CO2焊设备均为直流电源,采用反极性,熔滴过渡过程中,是电子撞击熔滴,因此引起的飞溅较小,对焊接过程的影响不大。C、由工艺因素引起的飞溅由工艺问题引起的飞溅是单面焊双面成形技术所需解决的主要问题。短路过渡焊接时,直流回路电感值调节不当,致使电源的动特性不适合,造成短路电流增长速度过快或过慢,从而产生小颗粒或大颗粒飞溅。另外,焊接电流和电弧电压的配比不当,也将影响熔滴向熔池过渡。电弧的长度关系到熔滴的大小。弧长增大,熔滴增大,飞溅增多;弧长减小,熔滴变细,飞溅减少。但弧长过短时,将阻碍熔滴向熔池过渡,同样产生较大的飞溅。因此必须限制短路电流的增长。电弧电压是决定弧长和熔滴过渡的重要因素,电弧电压过高或过低,无论是用小焊接电流还是大焊接电流施焊,飞溅都会增大。电弧电压与熔滴飞溅量之间的关系见图1-2所示。图1-2电弧电压与熔滴飞溅量之间关系电弧电压过高,不但熔滴的尺寸增大,而且弧长变长,使单面焊双面成形根本无法实现正常焊接,且大熔滴易受电磁力的影响,从而产生大颗粒飞溅。电弧电压过低,焊丝伸出长度部分由于电阻热的原因而产生爆断,引起飞溅。此外,电弧电压过低,电弧“潜入”熔池深处,发生固体短路,也易产生熔池飞溅。CO2气体保护焊减小飞溅的措施:1)在对飞溅要求严格的情况下,可使用超低碳焊丝,焊丝中碳的质量分数低于60.04%。2)正确选择焊接参数。短路过渡焊接时,选用动特性良好的小规范焊机,以保证熔滴短路过渡时具有合适的短路电流增长速度。3)调节地线方向,减少电磁力的影响。二、对CO2气体保护焊焊接参数的要求CO2气体保护焊单面焊双面成形一般采用细直径焊丝、短路过渡的形式焊接。正确地选择焊接参数,是获得良好正面和背面焊缝成形的先决条件。CO2气体保护焊的焊接参数主要包括:焊丝直径、焊接电流、电弧电压、焊接速度、焊丝伸出长度及气体流量等。1、焊丝直径的选择焊丝直径是影响单面焊双面成形的重要因素。焊丝直径的选择通常是以焊件厚度、焊接位置及生产率的要求为依据的。对于要求采用单面焊双面成形及厚度小于6mm的焊件和全位置焊接的韩风,一般要求采用细直径焊丝,焊丝直径在0.5~1.2mm之间。2、焊接电流的选择焊接电流是进行CO2气体保护焊单面焊双面成形的重要焊接参数。焊接电流的大小取决于焊件的厚度坡口形式、焊丝直径及熔滴过渡形式等因素。一定的焊丝直径,所允许的焊接电流范围很大。焊丝直径不同时,其焊接电流选择的范围亦不相同。小于250A的焊接电流,主要用于直径为0.5~1.2mm的焊丝进行短路过渡的焊接。该规范选择适当,飞溅极小,特别有利于实现单面焊双面成形焊缝成形美观。当焊接电流高于250A时,无论采用哪种直径的焊丝,都很难实现短路过渡焊接。3、电弧电压的选择电弧电压是影响焊接质量的重要焊接参数,它不但影响焊接过程的稳定性,而且对焊缝的成形、飞溅、焊接缺陷、短路过渡频率及焊缝力学性能都有很大影响。对单面焊双面成形来说,要获得稳定的焊接过程和良好的焊缝成形,要求电弧电压和焊接电流有良好的配合。熔滴过渡形式与焊接电流、电弧电压、焊丝直径等焊接参数之间的关系见下表1-1。7表1-1熔滴过渡形式与焊接参数之间的关系焊丝直径d/mm焊接电流I/A电弧电压U/V熔滴过渡形式0.530~6014~18短路过渡0.850~10017~211.070~12018~221.290~15019~231.6140~20020~241.2160~35025~38颗粒过渡1.6200~50026~404、焊接速度的选择焊接速度对焊缝的形状、尺寸、熔深及焊缝组织等都有较大影响。随着焊接速度的增大、焊缝熔宽和熔深减小,焊接速度过快时,还会导致保护气氛的破坏,使焊缝产生气孔。对低合金钢来说,焊接速度过快,使焊缝的冷却速度也同时加快,有可能产生淬硬倾向,导致冷裂纹的产生。焊接速度过慢,又会使熔宽加大,熔池变大,温度升高,容易产生烧穿和焊缝组织粗大等缺陷。将无法实现单面焊双面成形。5、焊丝伸出长度的选择焊丝伸出长度是指焊丝从导电嘴伸到焊件的距离。焊接过程中,随着焊丝伸出长度的增加,焊丝的预热状态电阻值急剧增大,焊丝熔化速度加快,可提高焊接速度。当焊丝伸出长度过大时,则焊丝发生过热而成段熔断,致使焊接过程不稳定,飞溅增大,焊缝成形不良,气体对熔池的保护也将被减弱。焊丝伸出长度过小时,则焊接电流增大,短路频率加快,并缩短了喷嘴与焊件之间的距离,使飞溅的金属物质堵塞喷嘴,影响气体的流通保护,产生气孔。实践表明,焊丝伸出长度为焊丝直径的10倍左右时较为适合。6、气体流量的选择CO2气体的流量对熔池保护效果有直接影响。CO2气体的流量必须以排除空气对熔池的侵袭为原则进行选择。CO2气体流量大小和接头形式、焊接电流大小、焊接速度的快慢、焊丝伸出长度及周围环境有关。当使用的焊接电流较大,焊接速度较快,焊丝伸出长度较大时,相应气体流量也8较大。反之则较小。周围环境空气流动时应增大气体流量,当空气流动影响较大时,应终止焊接。气体流量的增大和减小是相对的。过大的CO2气体流量会冲击金属熔池,使冷却作用加强,并且使保护气氛紊乱反而失去了保护作用,使焊缝产生气孔,飞溅增加,焊缝表面粗糙。CO2气体流量过小时,保护效果差,也易产生气孔。三、操作技巧1、焊接姿势和握枪要领二氧化碳气体保护焊由于焊枪结构较为复杂,因此操作起来不如焊条电弧焊那样方便自如。选择正确的焊接姿势和握枪要领直接关系到焊接质量的好坏,其操作要领如下:(1)身体和焊件的位置要合适,以方便焊接。(2)焊枪软管应舒展,以免影响送丝速度均匀。(3)焊枪可移动范围要大,焊接过程中可以很好地观察焊枪角度、熔池情况。(4)立焊、仰焊位置时,焊枪不宜发生摆动,且焊枪上的把线不应拖坠焊枪向前移动。2、引弧与熄弧在CO2气体保护焊中,引弧与熄弧比较频繁,操作不当易产生焊缝缺陷,如引弧处熔深浅,熄弧处凹陷严重,甚至产生弧坑裂纹等。(1)短路引弧引弧前焊丝端头与焊件应保持2—3mm的距离,然后开启焊枪上的手动开关,焊接电弧即在焊丝与焊件之间被引燃,引弧后应尽量将电弧压低并作适当的横向摆动,以防焊缝中心金属堆积过高而使焊缝两侧产生未熔合现象。(2)焊缝端头引弧需在焊缝端头引弧的焊件(如单面焊双面成形的板状工艺试件)应在距离焊缝端头4—5mm处引弧,然后稳步移向端头,待基本金属熔化后,再以正常速度沿焊缝方向移动。(3)收弧当焊接电源没有衰减电流装置时,焊枪应在弧坑处停留一下,并在熔池尚未凝固前,间断短路2—3次,使熔滴填满弧坑。当焊接电源设有衰减装置时,应使用衰减电流,将弧坑填满,然后熄弧。3、接头CO2气体保护焊单面焊双面成形打底焊时,由于收尾处的焊肉较厚,不宜直接接头,故重新引弧接头前应对前道焊缝收弧处的焊肉进行削薄打磨,即将收尾处用角磨机打9磨成斜坡状,然后在斜坡的顶端引弧,引燃电弧后,均匀平稳地将电弧移到斜坡底部,并做均匀摆动。4、焊接方向CO2气体保护焊按焊接方向的不同可分为左向焊法和右向焊法两种,如图1-3所示。ab图1-3左向焊法和右向焊法a)左向焊法b)右向焊法(1)左向焊法焊枪由右向左移