1.3栈1.栈的基本概念栈(stack)是一种特殊的线性表,是限定只在一端进行插入与删除的线性表。在栈中,一端是封闭的,既不允许进行插入元素,也不允许删除元素;另一端是开口的,允许插入和删除元素。通常称插入、删除的这一端为栈顶,另一端为栈底。当表中没有元素时称为空栈。栈顶元素总是最后被插入的元素,从而也是最先被删除的元素;栈底元素总是最先被插入的元素,从而也是最后才能被删除的元素。栈是按照“先进后出”或“后进先出”的原则组织数据的。例如,枪械的子弹匣就可以用来形象的表示栈结构。子弹匣的一端是完全封闭的,最后被压入弹匣的子弹总是最先被弹出,而最先被压入的子弹最后才能被弹出。2.栈的顺序存储及其运算栈的基本运算有3种:入栈、退栈与读栈顶元素。①入栈运算:在栈顶位置插入一个新元素;②退栈运算:取出栈顶元素并赋给一个指定的变量;③读栈顶元素:将栈顶元素赋给一个指定的变量。1.4队列1.队列的基本概念队列是只允许在一端进行删除,在另一端进行插入的顺序表,通常将允许删除的这一端称为队头,允许插入的这一端称为队尾。当表中没有元素时称为空队列。队列的修改是依照先进先出的原则进行的,因此队列也称为先进先出的线性表,或者后进后出的线性表。例如:火车进遂道,最先进遂道的是火车头,最后是火车尾,而火车出遂道的时候也是火车头先出,最后出的是火车尾。若有队列:Q=(q1,q2,…,qn)那么,q1为队头元素(排头元素),qn为队尾元素。队列中的元素是按照q1,q2,…,qn的顺序进入的,退出队列也只能按照这个次序依次退出,即只有在q1,q2,…,qn-1都退队之后,qn才能退出队列。因最先进入队列的元素将最先出队,所以队列具有先进先出的特性,体现“先来先服务”的原则。队头元素q1是最先被插入的元素,也是最先被删除的元素。队尾元素qn是最后被插入的元素,也是最后被删除的元素。因此,与栈相反,队列又称为“先进先出”(FirstInFirstOut,简称FIFO)或“后进后出”(LastInLastOut,简称LILO)的线性表。2.队列运算入队运算是往队列队尾插入一个数据元素;退队运算是从队列的队头删除一个数据元素。队列的顺序存储结构一般采用队列循环的形式。循环队列s=0表示队列空;s=1且front=rear表示队列满。计算循环队列的元素个数:“尾指针减头指针”,若为负数,再加其容量即可。1.5链表在链式存储方式中,要求每个结点由两部分组成:一部分用于存放数据元素值,称为数据域;另一部分用于存放指针,称为指针域。其中指针用于指向该结点的前一个或后一个结点(即前件或后件)。链式存储方式既可用于表示线性结构,也可用于表示非线性结构。(1)线性链表线性表的链式存储结构称为线性链表。在某些应用中,对线性链表中的每个结点设置两个指针,一个称为左指针,用以指向其前件结点;另一个称为右指针,用以指向其后件结点。这样的表称为双向链表。在线性链表中,各数据元素结点的存储空间可以是不连续的,且各数据元素的存储顺序与逻辑顺序可以不一致。在线性链表中进行插入与删除,不需要移动链表中的元素。线性单链表中,HEAD称为头指针,HEAD=NULL(或0)称为空表。如果是双项链表的两指针:左指针(Llink)指向前件结点,右指针(Rlink)指向后件结点。线性链表的基本运算:查找、插入、删除。(2)带链的栈栈也是线性表,也可以采用链式存储结构。带链的栈可以用来收集计算机存储空间中所有空闲的存储结点,这种带链的栈称为可利用栈。1.6二叉树1.6.1二叉树概念及其基本性质1.二叉树及其基本概念二叉树是一种很有用的非线性结构,具有以下两个特点:二级公共基础知识速学教程①非空二叉树只有一个根结点;②每一个结点最多有两棵子树,且分别称为该结点的左子树和右子树。在二叉树中,每一个结点的度最大为2,即所有子树(左子树或右子树)也均为二叉树。另外,二叉树中的每个结点的子树被明显地分为左子树和右子树。在二叉树中,一个结点可以只有左子树而没有右子树,也可以只有右子树而没有左子树。当一个结点既没有左子树也没有右子树时,该结点即为叶子结点。例如,一个家族中的族谱关系如图1-1所示:A有后代B,C;B有后代D,E;C有后代F。典型的二叉树如图1-1所示:详细讲解二叉树的基本概念,见表1-2。图1-1二叉树图表1-2二叉树的基本概念父结点(根)在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称树的根。例如,在图1-1中,结点A是树的根结点。子结点和叶子结点在树结构中,每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。例如,在图1-1中,结点D,E,F均为叶子结点。度在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。例如,在图1-1中,根结点A和结点B的度为2,结点C的度为1,叶子结点D,E,F的度为0。所以,该树的度为2。深度定义一棵树的根结点所在的层次为1,其他结点所在的层次等于它的父结点所在的层次加1。树的最大层次称为树的深度。例如,在图1-1中,根结点A在第1层,结点B,C在第2层,结点D,E,F在第3层。该树的深度为3。子树在树中,以某结点的一个子结点为根构成的树称为该结点的一棵子树。2.二叉树基本性质二叉树具有以下几个性质:性质1:在二叉树的第k层上,最多有2k-1(k≥1)个结点。性质2:深度为m的二叉树最多有2m-1个结点。性质3:在任意一棵二叉树中,度为0的结点(即叶子结点)总是比度为2的结点多一个。性质4:具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]表示取log2n的整数部分。3.满二叉树与完全二叉树满二叉树是指这样的一种二叉树:除最后一层外,每一层上的所有结点都有两个子结点。在满二叉树中,每一层上的结点数都达到最大值,即在满二叉树的第k层上有2k-1个结点,且深度为m的满二叉树有2m-1个结点。完全二叉树是指这样的二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。对于完全二叉树来说,叶子结点只可能在层次最大的两层上出现:对于任何一个结点,若其右分支下的子孙结点的最大层次为p,则其左分支下的子孙结点的最大层次或为p,或为p+1。完全二叉树具有以下两个性质:性质1:具有n个结点的完全二叉树的深度为[log2n]+1。性质2:设完全二叉树共有n个结点。如果从根结点开始,按层次(每一层从左到右)用自然数1,2,……,n给结点进行编号,则对于编号为k(k=1,2,……,n)的结点有以下结论:①若k=1,则该结点为根结点,它没有父结点;若k1,则该结点的父结点编号为INT(k/2);②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(显然也没有右子结点);③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。二级公共基础知识速学教程81.6.2二叉树的遍历在遍历二叉树的过程中,一般先遍历左子树,再遍历右子树。在先左后右的原则下,根据访问根结点的次序,二叉树的遍历分为三类:前序遍历、中序遍历和后序遍历。(1)前序遍历(根左右)先访问根结点,然后遍历左子树,最后遍历右子树;并且在遍历左、右子树时,仍需先访问根结点,然后遍历左子树,最后遍历右子树。例如,对图1-1中的二叉树进行前序遍历的结果(或称为该二叉树的前序序列)为:A,B,D,E,C,F。(2)中序遍历(左根右)先遍历左子树、然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。例如,对图1-1中的二叉树进行中序遍历的结果(或称为该二叉树的中序序列)为:D,B,E,A,C,F。(3)后序遍历(左右根)先遍历左子树、然后遍历右子树,最后访问根结点;并且,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后访问根结点。例如,对图1-1中的二叉树进行后序遍历的结果(或称为该二叉树的后序序列)为:D,E,B,F,C,A。1.7查找1.7.1顺序查找查找是指在一个给定的数据结构中查找某个指定的元素。从线性表的第一个元素开始,依次将线性表中的元素与被查找的元素相比较,若相等则表示查找成功;若线性表中所有的元素都与被查找元素进行了比较但都不相等,则表示查找失败。例如,在一维数组[21,46,24,99,57,77,86]中,查找数据元素99,首二级公共基础知识速学教程9先从第1个元素21开始进行比较,比较结果与要查找的数据不相等,接着与第2个元素46进行比较,以此类推,当进行到与第4个元素比较时,它们相等,所以查找成功。如果查找数据元素100,则整个线性表扫描完毕,仍未找到与100相等的元素,表示线性表中没有要查找的元素。在下列两种情况下也只能采用顺序查找:①如果线性表为无序表,则不管是顺序存储结构还是链式存储结构,只能用顺序查找;②即使是有序线性表,如果采用链式存储结构,也只能用顺序查找。1.7.2二分法查找二分法查找,也称拆半查找,是一种高效的查找方法。能使用二分法查找的线性表必须满足用顺序存储结构和线性表是有序表两个条件。“有序”是特指元素按非递减排列,即从小到大排列,但允许相邻元素相等。下一节排序中,有序的含义也是如此。对于长度为n的有序线性表,利用二分法查找元素X的过程如下:步骤1:将X与线性表的中间项比较;步骤2:如果X的值与中间项的值相等,则查找成功,结束查找;步骤3:如果X小于中间项的值,则在线性表的前半部分以二分法继续查找;步骤4:如果X大于中间项的值,则在线性表的后半部分以二分法继续查找。例如,长度为8的线性表关键码序列为:[6,13,27,30,38,46,47,70],被查元素为38,首先将与线性表的中间项比较,即与第4个数据元素30相比较,38大于中间项30的值,则在线性表[38,46,47,70]中继续查找;接着与中间项比较,即与第2个元素46相比较,38小于46,则在线性表[38]中继续查找,最后一次比较相等,查找成功。顺序查找法每一次比较,只将查找范围减少1,而二分法查找,每比较一次,可将查找范围减少为原来的一半,效率大大提高。对于长度为n的有序线性表,在最坏情况下,二分法查找只需比较log2n次,二级公共基础知识速学教程10而顺序查找需要比较n次。1.8排序1.交换类排序法(1)冒泡排序法首先,从表头开始往后扫描线性表,逐次比较相邻两个元素的大小,若前面的元素大于后面的元素,则将它们互换,不断地将两个相邻元素中的大者往后移动,最后最大者到了线性表的最后。然后,从后到前扫描剩下的线性表,逐次比较相邻两个元素的大小,若后面的元素小于前面的元素,则将它们互换,不断地将两个相邻元素中的小者往前移动,最后最小者到了线性表的最前面。对剩下的线性表重复上述过程,直到剩下的线性表变空为止,此时已经排好序。在最坏的情况下,冒泡排序需要比较次数为n(n-1)/2。(2)快速排序法任取待排序序列中的某个元素作为基准(一般取第一个元素),通过一次排序,将待排元素分为左右两个子序列,左子序列元素的排序码均小于或等于基准元素的排序码,右子序列的排序码则大于基准元素的排序码,然后分别对两个子序列继续进行排序,直至整个序列有序。2.插入类排序法①简单插入排序法,最坏情况需要n(n-1)/2次比较;②希尔排序法,最坏情况需要O(n1.5)次比较。3.选择类排序法①简单选择排序法,最坏情况需要n(n-1)/2次比较;②堆排序法,最坏情况需要O(nlog2n)次比较。相比以上几种(除希尔排序法外),堆排序法的时间复杂度最小。