高高中中物物理理经经典典问问题题------弹弹簧簧类类问问题题全全面面总总结结解解读读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a<g=匀加速向下移动。求经过多长时间木板开始与物体分离。分析与解:设物体与平板一起向下运动的距离为x时,物体受重力mg,弹簧的弹力F=kx和平板的支持力N作用。据牛顿第二定律有:mg-kx-N=ma得N=mg-kx-ma当N=0时,物体与平板分离,所以此时kagmx)(因为221atx,所以kaagmt)(2。2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是,F的最大值是。.分析与解:因为在t=0.2s内F是变力,在t=0.2s以后F是恒力,所以在t=0.2s时,P离开秤盘。此时P受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在0_____0.2s这段时间内P向上运动的距离:x=mg/k=0.4m因为221atx,所以P在这段时间的加速度22/202smtxa当P开始运动时拉力最小,此时对物体P有N-mg+Fmin=ma,又因此时N=mg,所以有Fmin=ma=240N.当P与盘分离时拉力F最大,Fmax=m(a+g)=360N.3.如图9所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物体A、B。物体A、B和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F在上面物体A上,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2,求:(1)此过程中所加外力F的最大值和最小值。(2)此过程中外力F所做的功。解:(1)A原来静止时:kx1=mg①当物体A开始做匀加速运动时,拉力F最小,设为F1,对物体A有:F1+kx1-mg=ma②当物体B刚要离开地面时,拉力F最大,设为F2,对物体A有:F2-kx2-mg=ma③对物体B有:kx2=mg④对物体A有:x1+x2=221at⑤由①、④两式解得a=3.75m/s2,分别由②、③得F1=45N,F2=285NF图8ABF图9图7(2)在力F作用的0.4s内,初末状态的弹性势能相等,由功能关系得:WF=mg(x1+x2)+2)(21atm49.5J4.如图5所示,轻弹簧的一端固定在地面上,另一端与木块B相连,木块A放在木块B上,两木块质量均为m,在木块A上施有竖直向下的力F,整个装置处于静止状态.(1)突然将力F撤去,若运动中A、B不分离,则A、B共同运动到最高点时,B对A的弹力有多大?(2)要使A、B不分离,力F应满足什么条件?【点拨解疑】力F撤去后,系统作简谐运动,该运动具有明显的对称性,该题利用最高点与最低点的对称性来求解,会简单的多.(1)最高点与最低点有相同大小的回复力,只有方向相反,这里回复力是合外力.在最低点,即原来平衡的系统在撤去力F的瞬间,受到的合外力应为F/2,方向竖直向上;当到达最高点时,A受到的合外力也为F/2,但方向向下,考虑到重力的存在,所以B对A的弹力为2Fmg.(2)力F越大越容易分离,讨论临界情况,也利用最高点与最低点回复力的对称性.最高点时,A、B间虽接触但无弹力,A只受重力,故此时恢复力向下,大小位mg.那么,在最低点时,即刚撤去力F时,A受的回复力也应等于mg,但根据前一小题的分析,此时回复力为F/2,这就是说F/2=mg.则F=2mg.因此,使A、B不分离的条件是F≤2mg.5.两块质量分别为m1和m2的木块,用一根劲度系数为k的轻弹簧连在一起,现在m1上施加压力F,如图14所示.为了使撤去F后m1跳起时能带起m2,则所加压力F应多大?gmmF)(21(对称法)6.如图1-4-8所示,离心机的光滑水平杆上穿着两个小球A、B,质量分别为2m和m,两球用劲度系数为k的轻弹簧相连,弹簧的自然长度为l.当两球随着离心机以角速度ω转动时,两球都能够相对于杆静止而又不碰两壁.求A、B的旋转半径rA和rB.223mkklrA7.(14分)如图14所示,A、B两滑环分别套在间距为1m的光滑细杆上,A和B的质量之比为1∶3,用一自然长度为1m的轻弹簧将两环相连,在A环上作用一沿杆方向的、大小为20N的拉力F,当两环都沿杆以相同的加速度a运动时,弹簧与杆夹角为53°。(cos53°=0.6)求:(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F,在撤去拉力F的瞬间,A的加速度为a/,a/与a之间比为多少?解:(1)先取A+B和弹簧整体为研究对象,弹簧弹力为内力,杆对A、B支持力与加速度方向垂直,在沿F方向应用牛顿第二定律F=(mA+mB)a①再取B为研究对象F弹cos53°=mBa②①②联立求解得,F弹=25N由几何关系得,弹簧的伸长量⊿x=l(1/sin53°-1)=0.25m所以弹簧的劲度系数k=100N/m(2)撤去F力瞬间,弹簧弹力不变,A的加速度a/=F弹cos53°/mA所以a/:a=3∶1。8.(14分)如图所示,质量M=3.5kg的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L=1.2m,其左端放有一质量为0.5kg的滑块Q。水平放置的轻弹簧左端固定,质量为1kg的小物块P置于桌面上的A点并与弹簧的右端接触。此时弹簧处于原长,现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为WF=6J,撤去推力后,P沿桌面滑到小车上并与Q相碰,最后Q停在小车的右端,P停在距小车左端0.5m处。已知AB间距L1=5cm,A点离桌子边沿C点距离L2=90cm,P与桌面间动摩擦因数4.01,P、Q与小车表面间动摩擦因数1.02。(g=10m/s2)求:(1)P到达C点时的速度VC。(2)P与Q碰撞后瞬间Q的速度大小。图14解:(1)对P由A→B→C应用动能定理,得21211121)2(CFvmLLgmWsmVC/2(2)设P、Q碰后速度分别为v1、v2,小车最后速度为v,由动量守恒定律得,22111vmvmvmCvMmmvmC)(211由能量守恒得,2212222112212212121vmmMvmvmgLmgSm解得,smv/22smv/322当smv/322时,21/35vsmv不合题意,舍去。即P与Q碰撞后瞬间Q的速度大小为smv/229.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x0,如图1-9-15所示.一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.解:质量为m的物块运动过程应分为三个阶段:第一阶段为自由落体运动;第二阶段为和钢板碰撞;第三阶段是和钢板一道向下压缩弹簧运动,再一道回到O点.质量为2m的物块运动过程除包含上述三个阶段以外还有第四阶段,即2m物块在O点与钢板分离后做竖直上抛运动.弹簧对于m:第二阶段,根据动量守恒有mv0=2mv1②对于2m物块:第二阶段,根据动量守恒有2mv0=3mv2④第三阶段,根据系统的机械能守恒有又因E′p=Ep⑦上几式联立起来可求出:l=x0/2二:常见弹簧类问题归类高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(21kx22-21kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式Ep=21kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析(收集整理中,欢迎提供更多信息,不好意思)一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为()A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1+m2)g/k2,而ml刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1+m2)·g/k2-m2g/k2=mlg/k2.此题若求ml移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,倔强系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,物块2的重力势能增加了____,物块1的重力势能增加了____。答案:,3.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1k2;A和B表示质量分别为mA和mB的两个小物块,mAmB,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使().A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D2004年高考全国理综卷二)如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为F的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有()A.B.C.D.答案:D【解析】首先,因为题中说明可以认为四个弹簧的质量皆为0,因此可断定在每个弹簧中,不管运动状态如何,内部处处拉力都相同.因为如果有两处拉力不同,则可取这两处之间那一小段弹簧来考虑,它受的合力等于它的质量乘加速度,现在质量为0,而加速度不是无穷大,所以合力必为0,这和假设两处拉力不同矛盾.故可知拉力处处相同.按题意又可知大小皆为F.其次,弹簧的伸长量l=Fk,k为劲度系数.由题意知四个弹簧都相同,即k都相同.故可知伸长量必相同命题意图与考查目的:本题通过对四种不同物理场景中弹簧的伸长量的比较,考查考生对力的概念的理解、物体的受力分析、牛顿一、二、三定律的掌握情况和综合运用能力.本题涉及到20