【2015年高考考纲解读】高考对本内容的考查主要有:[来源:学优高考网gkstk](1)直线、曲线的极坐标方程;(2)直线、曲线的参数方程;(3)参数方程与普通方程的互化;(4)极坐标与直角坐标的互化,本内容的考查要求为B级.[来源:学优高考网]【重点、难点剖析】1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ),则x=ρcosθ,y=ρsinθ,ρ2=x2+y2,tanθ=yxx≠0.2.直线的极坐标方程若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程(1)直线过极点:θ=α;(2)直线过点M(a,0)(a0)且垂直于极轴:ρcosθ=a;(3)直线过Mb,π2且平行于极轴:ρsinθ=b.3.圆的极坐标方程若圆心为M(ρ0,θ0),半径为r的圆方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r2=0.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r:ρ=r;(2)当圆心位于M(r,0),半径为r:ρ=2rcosθ;[来源:学优高考网gkstk](3)当圆心位于Mr,π2,半径为r:ρ=2rsinθ.(4)圆心在点M(x0,y0),半径为r的圆的参数方程为x=x0+rcosθ,y=y0+rsinθ(θ为参数,0≤θ≤2π).圆心在点A(ρ0,θ0),半径为r的圆的方程为r2=ρ2+ρ20-2ρρ0cos(θ-θ0).[来源:学优高考网gkstk]4.直线的参数方程经过点P0(x0,y0),倾斜角为α的直线的参数方程为x=x0+tcosα,y=y0+tsinα(t为参数).设P是直线上的任一点,则t表示有向线段P0P→的数量.5.圆的参数方程圆心在点M(x0,y0),半径为r的圆的参数方程为x=x0+rcosθ,y=y0+rsinθ(θ为参数,0≤θ≤2π).6.圆锥曲线的参数方程(1)椭圆x2a2+y2b2=1的参数方程为x=acosθ,y=bsinθ(θ为参数).(2)双曲线x2a2-y2b2=1的参数方程为x=asecθ,y=btanθ(θ为参数).(3)抛物线y2=2px(p0)的参数方程为x=2pt2,y=2pt(t为参数).【高频考点】热点一极坐标方程和参数方程【例1】(2014·辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.【命题意图】本题主要考查参数方程与普通方程、极坐标方程与普通方程间的转化.结合方程的转化和应用考查考生的应用意识和转化思想.【思路方法】(1)先列方程,再进一步转化为参数方程.(2)解出交点,再求得直线方程,最后转化为极坐标方程.【解析】(1)设(x1,y1)为圆上的点,在已知变换下变为曲线C上的点(x,y),依题意,得x=x1,y=2y1.由x21+y21=1,得x2+y22=1,即曲线C的方程为x2+y24=1.故C的参数方程为x=cost,y=2sint(t为参数).(2)由x2+y24=1,2x+y-2=0,解得x=1,y=0或x=0,y=2.不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为12,1,所求直线斜率为k=12,于是所求直线方程为y-1=12x-12,化为极坐标方程并整理,得2ρcosθ-4ρsinθ=-3,即ρ=34sinθ-2cosθ.【感悟提升】若极坐标系的极点与直角坐标系的原点重合,极轴与x轴正半轴重合,两坐标系的长度单位相同,则极坐标方程与直角坐标方程可以互化.求解与极坐标方程有关的问题时,可以转化为熟悉的直角坐标方程求解.若最终结果要求用极坐标表示,则需将直角坐标转化为极坐标.【变式探究】(2013·新课标全国Ⅱ)已知动点P、Q都在曲线C:x=2cost,y=2sint(t为参数)上,对应参数分别为t=α与t=2α(0α2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【解析】(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为x=cosα+cos2α,y=sinα+sin2α(α为参数,0α2π).(2)M点到坐标原点的距离d=x2+y2=2+2cosα(0α2π).当α=π,d=0,故M的轨迹过坐标原点.【规律方法】要熟悉常见曲线的参数方程、极坐标方程,如:圆、椭圆、双曲线、抛物线以及过一点的直线,在研究直线与它们的位置关系时常用的技巧是转化为普通方程解答.【变式探究】在极坐标系中,已知圆C经过点P2,π4,圆心为直线ρsinθ-π3=-32与极轴的交点,求圆C的极坐标方程.热点二极坐标方程与直角坐标方程、参数方程与普通方程的互化【例2】在直角坐标系xOy中,曲线C1的参数方程为x=2cosα,y=2+2sinα(α为参数),M是C1上的动点,P点满足OP→=2OM→,点P的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=π3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求AB.【解析】(1)设P(x,y),则由条件知Mx2,y2,由于M点在C1上,所以x2=2cosα,y2=2+2sinα,即x=4cosα,y=4+4sinα.从而C2的参数方程为x=4cosα,y=4+4sinα(α为参数).(2)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=π3与C1的交点A的极径为ρ1=4sinπ3,射线θ=π3与C2的交点B的极径为ρ2=8sinπ3.所以AB=|ρ2-ρ1|=23.【规律方法】解决这类问题一般有两种思路,一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.要注意题目所给的限制条件及隐含条件.【变式探究】已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=π4(ρ∈R),曲线C1,C2相交于A,B两点.(1)把曲线C1,C2的极坐标方程转化为直角坐标方程;(2)求弦AB的长度.【解析】(1)由ρ=6cosθ得;ρ2=6ρcosθ,∴x2+y2=6x,由θ=π4(ρ∈R)得:y=x,(2)圆的x2+y2=6x圆心(3,0),半径=3,圆心到直线AB的距离=|3-0|2=32,∴AB=232-322=32.热点三参数方程及其应用【例3】(2014·福建)已知直线l的参数方程为x=a-2t,y=-4t(t为参数),圆C的参数方程为x=4cosθ,y=4sinθ(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.【命题意图】本小题主要考查直线与圆的参数方程等基础知识,意在考查考生的运算求解能力及化归与转化思想.【解题思路】(1)消去参数,即可求出直线l与圆C的普通方程.(2)求出圆心的坐标,利用圆心到直线l的距离不大于半径,得到关于参数a的不等式,即可求出参数a的取值范围.【解析】(1)直线l的普通方程为2x-y-2a=0,圆C的普通方程为x2+y2=16.(2)因为直线l与圆C有公共点,[来源:学优高考网]故圆C的圆心到直线l的距离d=|-2a|5≤4,解得-25≤a≤25.【感悟提升】1.将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参和三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.2.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.【变式探究】已知直线l:x=1+12t,y=32t(t为参数),曲线C1:x=cosθ,y=sinθ(θ为参数).(1)设l与C1相交于A,B两点,求|AB|的值;(2)若把曲线C1上各点的横坐标压缩为原来的12,纵坐标压缩为原来的32,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.【解析】(1)l的普通方程为y=3(x-1),C1的普通方程为x2+y2=1.联立方程y=3x-1,x2+y2=1,解得l与C1的交点为A(1,0),B12,-32,则|AB|=1.(2)C2的参数方程为x=12cosθ,y=32sinθ(θ为参数).故点P的坐标是学优高考网12cosθ,32sinθ.从而点P到直线l的距离d=32cosθ-32sinθ-32=342sinθ-π4+2,当sinθ-π4=-1时,d取得最小值,且最小值为64(2-1).【能力突破】[来源:学优高考网]难点一、极坐标方程与参数方程的综合应用例1、(2014·新课标全国卷Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈0,π2.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线l:y=3x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.【命题意图】本题主要考查极坐标方程与直角坐标方程的转化,圆的参数方程及其应用,直线与圆的位置关系,意在考查考生的分析转化能力与运算求解能力.【解题思路】(1)先由曲线的极坐标方程写出其直角坐标方程,再判明曲线为半圆后写出对应的参数方程.(2)由相切性质可知,CD所在直线斜率与已知直线斜率相同,结合圆中参数t的意义知t=π3,代入参数方程即得D点的坐标.【解析】(1)C的普通方程为(x-1)2+y2=1(0≤y≤1).可得C的参数方程为x=1+cost,y=sint(t为参数,0≤t≤π).(2)设D(1+cost,sint).由(1)知C是以C(1,0)为圆心,1为半径的上半圆.因为C在点D处的切线与l垂直,所以直线CD与l的斜率相同,tant=3,t=π3.故D的直角坐标为1+cosπ3,sinπ3,即32,32.【感悟提升】方程解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于对方程所表示的曲线的认识,从而达到化陌生为熟悉的目的,这是化归与转化思想的应用.在涉及圆、椭圆的有关最值问题时,若能将动点的坐标用参数表示出来,借助相应的参数方程,可以有效地简化运算,从而提高解题的速度.常见题型及解题方法(1)求相关动点的轨迹方程时,用参数方程较为方便.(2)求两点间距离时,用极坐标比较方便,这两点与原点共线时,距离为|ρ1-ρ2|,这两点与原点不共线时,用余弦定理求解.无论哪种情形,用数形结合的方法,易得解题思路.【举一反三】在直角坐标系xOy中,曲线C1的参数方程为x=3cosα,y=sinα(α为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθ+π4=42.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.(2)由(1)知,椭圆C1与直线C2无公共