2016届中考数学总复习(5)因式分解-精练精析(答案解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数与式——因式分解一.选择题(共8小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣252.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+13.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个4.将(a﹣1)2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a﹣2)C.(a﹣2)(a﹣1)D.(a﹣2)(a+1)5.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)6.下面分解因式正确的是()A.x2+2x+1=x(x+2)+1B.(x2﹣4)x=x3﹣4xC.ax+bx=(a+b)xD.m2﹣2mn+n2=(m+n)27.分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)8.下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2二.填空题(共8小题)9.分解因式:a2+ab=_________.10.分解因式:2a2﹣6a=_________.11.若a=2,a﹣2b=3,则2a2﹣4ab的值为_________.12.因式分解:x2y﹣2xy2=_________.13.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于_________.14.因式分解:m(x﹣y)+n(x﹣y)=_________.15.已知实数a,b满足ab=3,a﹣b=2,则a2b﹣ab2的值是_________.16.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是_________.三.解答题(共8小题)17.设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.18.已知a﹣b=1且ab=2,求代数式a3b﹣2a2b2+ab3的值.19.分解因式:a3﹣2a2+a.20.证明:不论x取何实数,多项式﹣2x4+12x3﹣18x2的值都不会是正数.21.已知x=y+4,求代数式2x2﹣4xy+2y2﹣25的值.22.给出三个整式a2,b2和2ab.(1)当a=3,b=4时,求a2+b2+2ab的值;(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.23.已知实数a、b满足ab=1,a+b=2,求代数式a2b+ab2的值.24.分解因式:mx2﹣8mx+16m.数与式——因式分解参考答案与试题解析一.选择题(共8小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21D.a2+4a﹣21=(a+2)2﹣25考点:因式分解的意义.分析:利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解答:解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.点评:此题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.2.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x(x﹣2)+(2﹣x)C.x2﹣2x+1D.x2+2x+1考点:因式分解-提公因式法;因式分解-运用公式法.专题:因式分解.分析:分别将各选项利用公式法和提取公因式法分解因式进而得出答案.解答:解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练掌握公式法分解因式是解题关键.3.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个考点:因式分解-运用公式法;因式分解-提公因式法.专题:因式分解.分析:直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.解答:解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.点评:此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.4.将(a﹣1)2﹣1分解因式,结果正确的是()A.a(a﹣1)B.a(a﹣2)C.(a﹣2)(a﹣1)D.(a﹣2)(a+1)考点:因式分解-运用公式法.专题:计算题.分析:原式利用平方差公式分解即可.解答:解:原式=(a﹣1+1)(a﹣1﹣1)=a(a﹣2).故选:B.点评:此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.5.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)考点:因式分解-运用公式法;因式分解-提公因式法.分析:分别利用公式法以及提取公因式法分解因式进而判断得出即可.解答:解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),正确;D、2x+y无法因式分解,故此选项错误;故选:C.点评:此题主要考查了公式法以及提取公因式法分解因式,熟练掌握乘法公式是解题关键.6.下面分解因式正确的是()A.x2+2x+1=x(x+2)+1B.(x2﹣4)x=x3﹣4xC.ax+bx=(a+b)xD.m2﹣2mn+n2=(m+n)2考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用因式分解法的定义以及提取公因式法和公式法分解因式得出即可.解答:解:A、x2+2x+1=x(x+2)+1,不是因式分解,故此选项错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故此选项错误;C、ax+bx=(a+b)x,是因式分解,故此选项正确;D、m2﹣2mn+n2=(m﹣n)2,故此选项错误.故选:C.点评:此题主要考查了提取公因式法和公式法分解因式等知识,正确把握因式分解的方法是解题关键.7.分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)考点:提公因式法与公式法的综合运用.分析:首先提取公因式y,进而利用平方差公式进行分解即可.解答:解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.8.下列因式分解正确的是()A.2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2考点:提公因式法与公式法的综合运用.分析:A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.解答:解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.二.填空题(共8小题)9.分解因式:a2+ab=a(a+b).考点:因式分解-提公因式法.专题:因式分解.分析:直接提取公因式a即可.解答:解:a2+ab=a(a+b).点评:考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式有公因式,将其分解因式时应先提取公因式.10.分解因式:2a2﹣6a=2a(a﹣3).考点:因式分解-提公因式法.专题:因式分解.分析:观察原式,找到公因式2a,提出即可得出答案.解答:解:2a2﹣6a=2a(a﹣3).故答案为:2a(a﹣3).点评:此题主要考查了因式分解的基本方法一提公因式法.本题只要将原式的公因式2a提出即可.11.若a=2,a﹣2b=3,则2a2﹣4ab的值为12.考点:因式分解-提公因式法.分析:首先提取公因式2a,进而将已知代入求出即可.解答:解:∵a=2,a﹣2b=3,∴2a2﹣4ab=2a(a﹣2b)=2×2×3=12.故答案为:12.点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.因式分解:x2y﹣2xy2=xy(x﹣2y).考点:因式分解-提公因式法.专题:因式分解.分析:直接提取公因式xy,进而得出答案.解答:解:x2y﹣2xy2=xy(x﹣2y).故答案为:xy(x﹣2y).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.13.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2.考点:因式分解-提公因式法.专题:因式分解.分析:首先提取公因式ab,进而将已知代入求出即可.解答:解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.14.因式分解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).考点:因式分解-提公因式法.专题:因式分解.分析:直接提取公因式(x﹣y),进而得出答案.解答:解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).故答案为:(x﹣y)(m+n).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.15.已知实数a,b满足ab=3,a﹣b=2,则a2b﹣ab2的值是6.考点:因式分解-提公因式法.专题:计算题.分析:首先提取公因式ab,进而将已知代入求出即可.解答:解:a2b﹣ab2=ab(a﹣b),将ab=3,a﹣b=2,代入得出:原式=ab(a﹣b)=3×2=6.故答案为:6.点评:此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.16.若ab=3,a﹣2b=5,则a2b﹣2ab2的值是15.考点:因式分解-提公因式法.专题:整体思想.分析:直接提取公因式ab,进而将已知代入求出即可.解答:解:∵ab=3,a﹣2b=5,则a2b﹣2ab2=ab(a﹣2b)=3×5=15.故答案为:15.点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.三.解答题(共8小题)17.设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.考点:因式分解的应用.专题:计算题;因式分解.分析:先利用因式分解得到原式=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,再把当y=kx代入得到原式=(4x2﹣k2x2)2=(

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功