用心专心只要你努力一定会有收获!1第一节坐标系[备考方向要明了]考什么怎么考1.理解坐标系的作用,了解平面直角坐标系伸缩变换作用下平面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中用极坐标表示点位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.4.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程,通过比较这些图形在极坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.1.从知识点上看,主要考查极坐标方程与直角坐标的互化,考查点、曲线的极坐标方程的求法,考查数形结合、化归思想的应用能力以及分析问题、解决问题的能力.2.以解答题形式出现,难度不大,如2012年新课标高考T23等.[归纳·知识整合]1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:x′=λ·xλ>0,y′=μ·yμ>0的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O,点O叫做极点,自极点O引一条射线Ox,Ox叫做极轴;再确定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.(3)点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点,特别地,极点O的坐标为(0,θ)(θ∈R),和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用惟一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是惟一确定的.[探究]1.极点的极坐标如何表示?提示:规定极点的极坐标是极径ρ=0,极角可取任意角.3.极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ),则它们之间的关系为:x=ρcosθ,y=ρsinθ;ρ2=x2+y2,tanθ=yxx≠0.[探究]2.平面内点与点的直角坐标的对应法则是什么?与点的极坐标呢?提示:平面内的点与点的直角坐标是一一对应法则,而与点的极坐标不是一一对应法则,如果规定ρ0,0≤θ2π,那么除极点外,点的极坐标与平面内的点就一一对应了.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆ρ=r(0≤θ<2π)圆心为(r,0),半径为r的圆ρ=2rcos_θ-π2≤θ≤π2圆心为r,π2,半径为r的圆ρ=2rsin_θ(0≤θ<π)过极点,倾斜角为α的直线(1)θ=α(ρ∈R)或θ=π+α(ρ∈R)(2)θ=α和θ=π+α过点(a,0),与极轴垂直的直线ρcos_θ=a-π2<θ<π2过点a,π2,与极轴平行的直线ρsin_θ=a(0<θ<π)[自测·牛刀小试]1.极坐标方程ρ=cosθ化为直角坐标方程.2.(2013·北京模拟)在极坐标系中,求过点(1,0)并且与极轴垂直的直线方程.3.在极坐标系中,求点A2,π2关于直线l∶ρcosθ=1的对称点的一个极坐标.用心专心只要你努力一定会有收获!24.在极坐标系中,若过点A(3,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,求AB的长.5.已知圆的极坐标方程为ρ=2cosθ,求该圆的圆心到直线ρsinθ+2ρcosθ=1的距离.伸缩变换的应用[例1]求椭圆x24+y2=1,经过伸缩变换x′=12x,y′=y后的曲线方程.若椭圆x24+y2=1经过伸缩变换后的曲线方程为x′216+y′24=1,求满足的伸缩的变换.———————————————————求经伸缩变换后曲线方程的方法平面上的曲线y=f(x)在变换φ:x′=λx,y′=μy的作用下的变换方程的求法是将x=x′λ,y=y′μ代入y=f(x),得y′μ=fx′λ,整理之后得到y′=h(x′),即为所求变换之后的方程.1.在同一坐标系中,曲线C经过伸缩变换x′=x,y′=12y后得到的曲线方程为y′=lg(x′+5),求曲线C的方程.极坐标与直角坐标的互化[例2]已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-22ρcosθ-π4=2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.———————————————————极坐标与直角坐标互化的注意点(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不惟一.(2)在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.2.(2013·佛山检测)在平面直角坐标系xOy中,点P的直角坐标为(1,-3).若以原点O为极点,x轴正半轴为极轴建立极坐标系,求点P的极坐标.3.求以点A(2,0)为圆心,且过点B23,π6的圆的极坐标方程.用心专心只要你努力一定会有收获!3极坐标系的综合问题[例3]从极点O作直线与另一直线l:ρcosθ=4相交于点M,在OM上取一点P,使OM·OP=12.(1)求点P的轨迹方程;(2)设R为l上的任意一点,试求|RP|的最小值.———————————————————求解与极坐标有关的问题的主要方法一是直接利用极坐标系求解,求解时可与数形结合思想结合使用;二是转化为直角坐标系后,用直接坐标求解.使用后一种时应注意,若结果要求的是极坐标,还应将直角坐标化为极坐标.4.(2013·西安五校联考)在极坐标系(ρ,θ)(0≤θ2π)中,求曲线ρ=2sinθ与ρcosθ=-1的交点的极坐标.5.(2012·安徽高考改编)在极坐标系中,求圆ρ=4sinθ的圆心到直线θ=π6(ρ∈R)的距离.1个互化——极坐标与直角坐标的互化(1)互化的三个前提条件①极点与原点重合;②极轴与x轴正方向重合;③取相同的单位长度.(2)若把直角坐标化为极坐标,求极角θ时,应注意判断点P所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题.5个步骤——求曲线极坐标方程的五步曲易误警示——极坐标系中的解题误区[典例](2012·湖南高考改编)在极坐标系中,曲线C1:ρ(2cosθ+sinθ)=1与曲线C2:ρ=a(a0)的一个交点在极轴上,求a的值.[易误辨析](1)因没有掌握极坐标与直角坐标的转化,无法把极坐标方程转化为普通方程.(2)因不清楚题意,即直线与圆的交点实为直线与x轴的交点,如果不会转化,导致计算加大,多走弯路.(3)解答与极坐标有关的问题时,还易出现不注意极径、极角的取值范围等而致错的情况.[变式训练]已知两曲线的极坐标方程C1:ρ=2(0≤θ≤π),C2:ρ=4cosθ,求两曲线交点的直角坐标.用心专心只要你努力一定会有收获!41.已知直线的极坐标方程ρsinθ+π4=22,求极点到直线的距离.2.在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.3.(2012·江西高考改编)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程.4.已知圆M的极坐标方程为ρ2-42ρcosθ-π4+6=0,求ρ的最大值.5.(2012·江苏高考)在极坐标系中,已知圆C经过点P2,π4,圆心为直线ρsinθ-π3=-32与极轴的交点,求圆C的极坐标方程.1.设直线l1的参数方程为x=1+t,y=a+3t,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系得另一直线l1的方程为ρsinθ-3ρcosθ+4=0,若直线l1与l2间的距离为10,求实数a的值.2.(2011·江西高考改编)若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,求该曲线的直角坐标方程.3.极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值.4.在极坐标系中,圆C的圆心C6,π6,半径r=6.(1)写出圆C的极坐标方程;(2)若Q点在圆C上运动,P在OQ的延长线上,且OQ∶QP=3∶2,求动点P的轨迹方程.用心专心只要你努力一定会有收获!5第二节参数方程[备考方向要明了]考什么怎么考1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.本节考查的重点是参数方程和直角坐标方程的互化,热点是参数方程、极坐标方程的综合性问题,难度较小,主要考查转化和化归的思想方法,如2012年新课标T23等.[归纳·知识整合]1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C上任意一点P的坐标x,y都可以表示为某个变量t的函数:x=ft,y=gt反过来,对于t的每个允许值,由函数式x=ft,y=gt所确定的点P(x,y)都在曲线C上,那么方程x=ft,y=gt叫做这条曲线C的参数方程,变量t叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.[探究]1.平面直角坐标系中,同一曲线的参数方程惟一吗?提示:不唯一,平面直角坐标系中,对于同一曲线来说,由于选择的参数不同,得到的曲线的参数方程也不同.2.直线的参数方程经过点M(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosα,y=y0+tsinα(t为参数).3.圆的参数方程圆心为(a,b),半径为r的圆的参数方程为x=a+rcosθ,y=b+rsinθ(θ为参数).4.椭圆的参数方程椭圆x2a2+y2b2=1(a>b>0)的参数方程为x=acosθ,y=bsinθ(θ为参数).[探究]2.椭圆x2a2+y2b2=1(ab0)的参数方程x=acosφ,y=bsinφ(φ为参数)中,参数φ的几何意义是什么?提示:如图,取椭圆x2a2+y2b2=1(ab0)上任一点M作x轴垂线,交以原点为圆心,a为半径的圆于点A,φ就是点M所对应的圆的半径OA的旋转角(或点M的离心角)即Ox绕O逆时针转到与OA重合时的最小正角,φ∈[0,2π).[自测·牛刀小试]1.若直线l的参数方程为x=1+3t,y=2-4t(t为参数),求直线l倾斜角的余弦值..2.已知点P(3,m)在以点F为焦点的抛物线x=4t2,y=4t(t为参数)上,求|PF|.3.(2012·中山模拟)将参数方程x=cosα,y=1+sinα(α为参数)化成普通方程.4.求参数方程x=t+1t,y=2(t为参数)表示的曲线.5.求椭圆x-123+y+225=1的参数方程.参数方程与普通方程的互化[例1]将下列参数方程化为普通方程.(1)x=3k1+k2,y=6k21+k2,(2)x=1-sin2θ,y=sinθ+cosθ.———————————————————将参数方程化为普通方程的方法用心专心只要你努力一定会有收获!6(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin2θ+cos2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.1.将下列参数方程化为普通方程.(1)x=1t,y=1tt2-1(t为参数);(2)x=1-t21+t2,y=t1+t2(t为参数).[例2](2012·湖南高考)在直角坐标系xOy中,