第2章物理层物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。2.2数据通信的基础知识2.2.1数据通信系统的模型传输系统输入信息输入数据发送的信号接收的信号输出数据源点终点发送器接收器调制解调器PC机公用电话网调制解调器数字比特流数字比特流模拟信号模拟信号输入汉字显示汉字数据通信系统源系统目的系统传输系统输出信息PC机几个术语数据(data)——运送消息的实体。信号(signal)——数据的电气的或电磁的表现。“模拟的”(analogous)——代表消息的参数的取值是连续的。“数字的”(digital)——代表消息的参数的取值是离散的。码元(code)——在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。两种信号的相互转换:模拟信号数字信号数字信号模拟信号采样、量化、编码载波调制2.2.2有关信道的几个基本概念信道——用来表示向某一个方向传送信息的媒体单向通信(单工通信)——只能有一个方向的通信而没有反方向的交互。双向交替通信(半双工通信)——通信的双方都可以发送信息,但不能双方同时发送(当然也就不能同时接收)。双向同时通信(全双工通信)——通信的双方可以同时发送和接收信息。基带(baseband)信号和带通(bandpass)信号基带信号(即基本频带信号)——来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道并不能传输这种低频分量或直流分量。因此必须对基带信号进行调制(modulation)。带通信号——把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道中传输(即仅在一段频率范围内能够通过信道)。几种最基本的调制方法载波:Acos(wt+Q)最基本的二元制调制方法有以下几种:调幅(AM):载波的振幅随基带数字信号而变化。调频(FM):载波的频率随基带数字信号而变化。调相(PM):载波的初始相位随基带数字信号而变化。对基带数字信号的几种调制方法010011100基带信号调幅调频调相载波信号2.3物理层下面的传输媒体传输媒体也称为传输介质或传输媒介,是数据传输系统中在发送器和接收器间的物理通路,有两大类:导向传输媒体和非导向传输媒体2.3.1导向传输媒体双绞线屏蔽双绞线STP(ShieldedTwistedPair)无屏蔽双绞线UTP(UnshieldedTwistedPair)同轴电缆50同轴电缆75同轴电缆光缆各种电缆铜线铜线聚氯乙烯套层聚氯乙烯套层屏蔽层绝缘层绝缘层外导体屏蔽层绝缘层绝缘保护套层内导体无屏蔽双绞线UTP屏蔽双绞线STP同轴电缆光纤在光纤中的折射折射角入射角包层(低折射率的媒体)包层(低折射率的媒体)纤芯(高折射率的媒体)包层纤芯光纤的工作原理高折射率(纤芯)低折射率(包层)光线在纤芯中传输的方式是不断地全反射输入脉冲输出脉冲单模光纤多模光纤与单模光纤输入脉冲输出脉冲多模光纤2.3.2非导向传输媒体无线传输所使用的频段很广。短波通信主要是靠电离层的反射,但短波信道的通信质量较差。微波在空间主要是直线传播。地面微波接力通信卫星通信2.4信道复用技术2.4.1频分复用、时分复用和统计时分复用复用(multiplexing)是通信技术中的基本概念。多路复用指的是复用信道,即利用一个物理信道同时传输多个信号,以提高信道利用率,使一条线路能同时由多个用户使用而互不影响。共享信道信道A1A2B1B2C1C2信道信道A1A2B1B2C1C2复用分用(a)不使用复用技术(b)使用复用技术频分复用FDM(FrequencyDivisionMultiplexing)频分多路复用(FDM,FrequencyDivisionMultiplexing)就是将物理信道的总带宽分割成若干个与传输单个信号带宽相同(或略为宽一点)的子信道,每一个子信道传输一路信号。频率时间频率1频率2频率3频率4频率5用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。频分复用的所有用户在同样的时间占用不同的带宽资源(请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。多路复用器MUX多路复用器MUXS1S2S3f1f21f3时分复用TDM(TimeDivisionMultiplexing)时分复用的所有用户是在不同的时间占用同样的频带宽度。时分复用则是将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个TDM帧中占用固定序号的时隙。每一个用户所占用的时隙是周期性地出现(其周期就是TDM帧的长度)。TDM信号也称为等时(isochronous)信号。时分复用的所有用户是在不同的时间占用同样的频带宽度。时分复用频率时间BCDBCDBCDBCDAAAAA在TDM帧中的位置不变TDM帧TDM帧TDM帧TDM帧…TDM帧时分复用频率时间CDCDCDAAAABBBBCDB在TDM帧中的位置不变TDM帧TDM帧TDM帧TDM帧…TDM帧时分复用频率时间BDBDBDAAAABCCCCDC在TDM帧中的位置不变TDM帧TDM帧TDM帧TDM帧…TDM帧时分复用频率时间BCBCBCAAAABCDDDDD在TDM帧中的位置不变TDM帧TDM帧TDM帧TDM帧…TDM帧时分复用可能会造成线路资源的浪费使用时分复用系统传送计算机数据时,由于计算机数据的突发性质,用户对分配到的子信道的利用率一般是不高的。当用户在某一段时间暂时无数据传输时(例如用户正在键盘上输入数据或正在浏览屏幕上的信息),那就只能让已经分配到手的子信道空闲着,而其他用户也无法使用这个暂时空闲的线路资源。ABCDaabdbcatttttb4个时分复用帧#1④③②①accd时分复用#2#3#4用户bcC没有信息D没有信息A没有信息D没有信息A没有信息B没有信息D没有信息B没有信息C没有信息1234时分复用可能会造成线路资源的浪费时分多路复用统计时分复用STDM(StatisticTDM)用户ABCDabcdtttt④③②①acb统计时分复用t3个STDM帧#1abbcacd#2#3集中器统计时分复用又称为异步时分多路复用,允许动态地分配时间片。根据用户对时间片的需求来分配时间片,没有数据传输的用户不分配时间片。同时对每个时间片加上用户标识,以区别该时间片属于该用户。统计时分复用又称为异步时分复用,而普通的时分复用称为同步时分复用。2.4.2波分复用WDM(WavelengthDivisionMultiplexing)波分复用就是光的频分复用。波分多路复用(WDM,WavelengthDivisionMultiplexing)技术是在一根光纤中能同时传播多个波长不同的光载波复用技术。通过波分多路复用可以使原来在一根光纤上只能传输一个光载波的单一光信道,变为可传输多个不同波长光载波的光信道,使光纤的传输能力成倍增加。共享光纤棱镜/光栅棱镜/光栅光纤1光纤2光纤3光纤4波分多路复用2.4.3码分复用CDM(CodeDivisionMultiplexing)常用的名词是码分多址CDMA(CodeDivisionMultipleAccess)。各用户使用经过特殊挑选的不同码型,因此彼此不会造成干扰。这种系统发送的信号有很强的抗干扰能力。每一个比特时间划分为m个短的间隔,称为码片(chip)。几种复用技术的简单对比例:假设现在在开会TDM(时分复用)如在同一个房间轮流发言的方式,但一次只能一个人说,一个说完,另一个继续。FDM(频分复用)则先将大房间隔成若干个小房间,每个小房间里的人互相交流。CDMA(码分多路复用)则是把所有的人放在一个大房间里,他们说着不同的语言。这样他要交流只要找自己的语言的那个,而不用担心别的语言的噪声。……………………………………………………………………………………………………….2.6宽带接入技术2.6.1xDSL技术xDSL技术就是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带业务。虽然标准模拟电话信号的频带被限制在300~3400kHz的范围内,但用户线本身实际可通过的信号频率仍然超过1MHz。2.6宽带接入技术2.6.1xDSL技术xDSL技术就把0~4kHz低端频谱留给传统电话使用,而把原来没有被利用的高端频谱留给用户上网使用。DSL就是数字用户线(DigitalSubscriberLine)的缩写。而DSL的前缀x则表示在数字用户线上实现的不同宽带方案。xDSL的几种类型ADSL(AsymmetricDigitalSubscriberLine):非对称数字用户线HDSL(HighspeedDSL):高速数字用户线SDSL(Single-lineDSL):1对线的数字用户线VDSL(VeryhighspeedDSL):甚高速数字用户线DSL:ISDN用户线。RADSL(Rate-AdaptiveDSL):速率自适应DSL,是ADSL的一个子集,可自动调节线路速率)。ADSL的特点上行和下行带宽做成不对称的。上行指从用户到ISP,而下行指从ISP到用户。ADSL在用户线(铜线)的两端各安装一个ADSL调制解调器。我国目前采用的方案是离散多音调DMT(DiscreteMulti-Tone)调制技术。这里的“多音调”就是“多载波”或“多子信道”的意思。DMT技术DMT调制技术采用频分复用的方法,把40kHz以上一直到1.1MHz的高端频谱划分为许多的子信道,其中25个子信道用于上行信道,而249个子信道用于下行信道。每个子信道占据4kHz带宽(严格讲是4.3125kHz),并使用不同的载波(即不同的音调)进行数字调制。这种做法相当于在一对用户线上使用许多小的调制解调器并行地传送数据。DMT技术的频谱分布…频谱频率上行信道传统电话04下行信道…(kHz)~40~138~1100ADSL的极限传输距离ADSL的极限传输距离与数据率以及用户线的线径都有很大的关系(用户线越细,信号传输时的衰减就越大),而所能得到的最高数据传输速率与实际的用户线上的信噪比密切相关。例如,0.5毫米线径的用户线,传输速率为1.5~2.0Mb/s时可传送5.5公里,但当传输速率提高到6.1Mb/s时,传输距离就缩短为3.7公里。如果把用户线的线径减小到0.4毫米,那么在6.1Mb/s的传输速率下就只能传送2.7公里ADSL的数据率由于用户线的具体条件往往相差很大(距离、线径、受到相邻用户线的干扰程度等都不同),因此ADSL采用自适应调制技术使用户线能够传送尽可能高的数据率。当ADSL启动时,用户线两端的ADSL调制解调器就测试可用的频率、各子信道受到的干扰情况,以及在每一个频率上测试信号的传输质量。ADSL的数据率ADSL不能保证固定的数据率。对于质量很差的用户线甚至无法开通ADSL。通常下行数据率在32kb/s到6.4Mb/s之间,而上行数据率在32kb/s到640kb/s之间。2.6.2光纤同轴混合网HFC(HybridFiberCoax)HFC网是在目前覆盖面很广的有线电视网CATV的基础上开发的一种居民宽带接入网。HFC网除可传送CATV外,还提供电话、数据和其他宽带交互型业务。现有的CATV网是树形拓扑结构的同轴电缆网络,它采用模拟技术的频分复用对电视节目进行单向传输。而HFC网则需要对CATV网进行改造,HFC的主要特点(1)HFC网的主干线路采用光纤HFC网将原CATV网中的同轴电缆主干部分改换为光纤,并使用模拟光纤技术。在模拟光纤中采用光的振幅调制AM,这比使用数字光纤更为经济。模拟光纤从头端连接到光纤结点(fibernode),即光分配结点ODN(OpticalDistributionNode)。在光纤结点光信号被转换为电信号。在光纤结点以下就是同轴电缆。(2)HFC网采用结点体系结构同轴电缆头端模拟光纤放大器引入线分路