5G通信系统中massiveMIMO-FBMC技术的结合概述

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ImassiveMIMO-FBMC技术综述摘要为了应对第五代移动通信(5G)中更高数据率和更低时延的需求,大规模MIMO(massivemultiple-inputmultiple-output)技术已经被提出并被广泛研究。大规模MIMO技术能大幅度地提升多用户网络的容量。而在5G中的带宽研究方面,特别是针对碎片频谱和频谱灵活性问题,现有的正交频分多址(OrthogonalFrequencyDivisionMultiplexing,OFDM)技术不可能应对未来的挑战,新的波形方案需要被设计出来。基于此,FBMC(filterbankmulticarrier)技术由于具有比OFDM低得多的带外频谱泄露而被受到重视,并已被标准推进组IMT-2020列为5G物理层的主要备选方案之一。本文首先回顾了5G中波形设计方案(主要是FBMC调制)和大规模多天线系统(即massiveMIMO)的现有工作和主要挑战。然后,简要介绍了基于MassiveMIMO的FBMC系统中的自均衡性质,该性质可以用于减少系统所需的子载波数目。同时,FBMC中的盲信道跟踪性质可以用于消除massiveMIMO系统中的导频污染问题。尽管如此,如何将FBMC技术应用于massiveMIMO系统中的误码率、计算复杂度、线性需求等方面仍然不明确,未来更多的研究工作需要在massiveMIMO-FBMC方面展开来。关键词:大规模MIMO;FBMC;自均衡;导频污染;盲均衡IIAbstractInordertoaddresstherequirementsofhigherdataratesandlowerlatencyinthefifthgenerationmobilecommunicationsystems(5G),massivemultiple-inputmultiple-output(MIMO)hasbeenproposedandiscurrentlyanactiveareaofresearch.Thisisduetothefactthattheycangreatlyincreasethecapacityofmultiusernetworks.Inthequestforbandwidth,particularchallengesthatneedtobeaddressedinthecontextof5Garefragmentedspectrumandspectrumagility.ItisunlikelythatthesechallengescanbesatisfiedusingOrthogonalFrequencyDivisionMultiplexing(OFDM),andnewwaveformsarerequired.Thefilterbankmulticarrier(FBMC)techniquehasbeenlistedbyIMT-2020asoneofthekeyphysicallayercandidatesin5G,sincetheFBMChasmuchlowerout-of-bandradiationthantheOFDM.Thisarticlereviewsexistingrelatedworkandidentifiesthemainchallengesinthekey5Gareaattheintersectionofwaveformdesign(especiallyforFBMC)andlarge-scalemultipleantennasystems,alsoknownasMassiveMIMO.Thepropertyofself-equalizationisthenintroducedforFBMC-basedMassiveMIMO,whichcanreducethenumberofsubcarriersrequiredbythesystem.ItisalsoshownthattheblindchanneltrackingpropertyofFBMCcanbeusedtoaddresspilotcontamination-oneofthemainlimitingfactorsofMassiveMIMOsystems.Nevertheless,theimplicationsofFBMConerror-rateperformance,computationalcomplexity,andlinearityrequirementsinlarge-scaleMIMOsystemswithpotentiallyhundredsofantennasatthebasestationarestillunclear.MoreresearchworkscorrespondtothemassiveMIMO-FBMCsystemareneededinthefuture.KeyWords:massiveMIMO;FBMC;self-equalization;pilotcontamination;blindequalizationIII目录摘要...........................................................................................................................IAbstract........................................................................................................................II1引言.......................................................................................................................12技术背景简介.......................................................................................................32.1massiveMIMO技术....................................................................................32.1.1MassiveMIMO的引入........................................................................32.1.2点对点MIMO.....................................................................................42.1.3多用户MIMO(MU-MIMO)...............................................................62.2FBMC技术..................................................................................................73massiveMIMO-FBMC的结合问题.................................................................103.1信道均衡问题.............................................................................................103.2导频污染问题.............................................................................................114结语.....................................................................................................................13参考文献.....................................................................................................................1411引言MassiveMIMO(又称largescaleMIMO)技术,是指基站端采用大规模天线阵列,天线数超过十根甚至上百根,并且在同一时频资源内服务多个用户的多天线技术,该技术由贝尔实验室的Marzetta于2010年首次提出,目前已成为5G无线通信领域最具潜力的研究方向之一[1,2]。与传统的MIMO相比,MassiveMIMO不同之处主要在于,天线趋于很多(无穷)时信道之间趋于正交,这使得系统的很多性能都只与大尺度相关,与小尺度无关。特别是在TDD大规模MIMO系统中,基站可以通过反向链路的导频序列来估计出下行链路的信道状态信息(CSI),无需基站间协作,仅采用简单的预处理即可降低小区间和用户间干扰,并且非相关的加性噪声和快衰落随着天线数的无限增加而消失[3]。Marzetta等人在研究massiveMIMO时,均使用OFDM技术将移动用户和基站多天线之间的频率选择性信道变成一系列的平坦衰落信道。传统的OFDM虽然能达到很小的复杂度和非常高的带宽效率,但在应用到更复杂的动态或多用户网络中时,却存在难以实现严格同步(移动环境下的多普勒效应)和非连续频带的传输(谱泄漏严重)两大主要问题,而滤波器组多载波(FilterBankMulticarrier,FBMC)技术通过使用时频聚焦性良好的滤波器解决了上述问题[4]。与OFDM技术不同,FBMC中:1)原型滤波器的冲击响应和频率响应可以根据需要进行设计,各载波之间不再必须是正交的,不需要插入循环前缀,从而获得了更高的带宽效率;2)能实现各子载波带宽设置、各子载波之间的交叠程度的灵活控制,从而可灵活控制相邻子载波之间的干扰,并且便于使用一些零散的频谱资源;3)各子载波之间不需要同步,同步、信道估计、检测等可在各子载波上单独进行处理,因此尤其适合于难以实现各用户之间严格同步的上行链路。FBMC作为OFDM的备选技术之一,已被证明能很好的适用于认知无线电通信、双色散信道通信、数字用户线(DSLs)和电力线通信(PLC)[5],具有较强的发展潜力,但关于将FBMC作为MassiveMIMO系统调制方案的研究才刚2刚开始[6]。本文主要对massiveMIMO-FBMC现有技术进行调研,旨在为未来massiveMIMO-FBMC的研究提供思路。32技术背景简介2.1massiveMIMO技术大规模MIMO技术是指基站端采用大规模天线阵列,天线数超过十根甚至上百根,并且在同一时频资源内服务多个用户的多天线技术。与传统的MIMO相比,大规模MIMO不同之处主要在于,天线趋于很多(无穷)时信道之间趋于正交,这使得系统的很多性能都只与大尺度相关,与小尺度无关。并且,在TDD大规模MIMO系统中,基站可以通过反向链路的导频序列来估计出下行链路的信道状态信息(CSI),无需基站间协作,仅采用简单的预处理即可降低小区间和用户间干扰。同时,非相关的加性噪声和快衰落随着天线数的无限增加而消失。2.1.1MassiveMIMO的引入假设在一个传统MIMO系统下,基站天线数和用户天线数分别为M、K,则基站处的接收信号向量1yM可以表示为yHxn(2-1)其中1xK,HMK,1nM表示均值为0、方差为1的独立同分布加性

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功