§2.4多元线性回归模型的统计检验和区间估计StatisticalTestandIntervalEstimationofMultipleLinearRegressionModel拟合优度检验AIC和SC准则方程的显著性检验(F检验)变量的显著性检验(t检验)参数估计量的区间估计预测值的区间估计受约束回归参数稳定性检验说明由计量经济模型的数理统计理论要求的以多元线性模型为例包括拟合优度检验、总体显著性检验、变量显著性检验、偏回归系数约束检验、模型对时间的稳定性检验、参数估计量的区间估计、预测值的区间估计、受约束回归。一、拟合优度检验(TestingofSimulationLevel)1、概念检验模型对样本观测值的拟合程度通过构造一个可以表征拟合程度的统计量来实现。问题:采用普通最小二乘估计方法,已经保证了模型最好地拟合了样本观察值,为什么还要检验拟合程度?2、总体平方和、回归平方和、残差平方和定义2()iTSSYY总体平方和(TotalSumofSquares)2ˆ()iESSYY回归平方和(ExplainedSumofSquares)2ˆ()iiRSSYY残差平方和(ResidualSumofSquares)问题:既然RSS反映了样本观测值与估计值偏离的大小,可否直接用它来作为拟合优度检验的统计量?统计量必须是相对量。TSS、ESS、RSS之间的关系TSS=ESS+RSS3、一个有趣的现象:ˆˆiiiYYYYYY222ˆˆiiiYYYYYY222ˆˆiiiiYYYYYY=关键是在于TSS=ESS+RSS推导过程中用到的一组矩条件:ˆ00,1,...,jiiXYYjk矩条件在大样本下成立,只有一个样本时肯定不成立,在样本足够大时近似成立。理解教材中TSS=ESS+RSS的推导过程4、拟合优度检验统计量:可决系数r2和调整后的可决系数R2可决系数r221ESSRSSrTSSTSSr2越接近于1,模型的拟合优度越高。问题:如果在模型中增加一个解释变量,r2往往增大(?)是否越多的解释变量,模型拟合的越好?DependentVariable:CONSPMethod:LeastSquaresSample:19782000Includedobservations:23VariableCoefficientStd.Errort-StatisticProb.GDPP0.3861800.00722253.474710.0000C201.118914.8840213.512410.0000R-squared0.992710Meandependentvar905.3304AdjustedR-squared0.992363S.D.dependentvar380.6334S.E.ofregression33.26450Akaikeinfocriterion9.929800Sumsquaredresid23237.06Schwarzcriterion10.02854Loglikelihood-112.1927Hannan-Quinncriter.9.954632F-statistic2859.544Durbin-Watsonstat0.550636Prob(F-statistic)0.000000在消费模型中,Eviews软件估计结果DependentVariable:CONSPMethod:LeastSquaresSample(adjusted):19792000Includedobservations:22afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.GDPP0.2213590.0609733.6304620.0018CONSP(-1)0.4514080.1703182.6503800.0158C120.725336.513743.3062990.0037R-squared0.995403Meandependentvar928.4909AdjustedR-squared0.994919S.D.dependentvar372.6339S.E.ofregression26.56264Akaikeinfocriterion9.523012Sumsquaredresid13405.90Schwarzcriterion9.671791Loglikelihood-101.7531Hannan-Quinncriter.9.558060F-statistic2056.887Durbin-Watsonstat1.278902Prob(F-statistic)0.000000在消费模型中,Eviews软件估计结果调整后的可决系数R22111RSSnkRTSSn问题:•为什么以R2作为检验统计量避免了片面增加解释变量的问题?•R2多大才算通过拟合优度检验?二、AIC、SC准则(Akaikeinformationcriterion,AICSchwarzcriterion,SC)AIC、SC准则要求:在模型中增加解释变量的条件是能够减少AIC值或SC值。222(1)lnlnlniiekAICnnekSCnnnDependentVariable:CONSPMethod:LeastSquaresSample:19782000Includedobservations:23VariableCoefficientStd.Errort-StatisticProb.C201.118914.8840213.512410.0000GDPP0.3861800.00722253.474710.0000R-squared0.992710Meandependentvar905.3304AdjustedR-squared0.992363S.D.dependentvar380.6334S.E.ofregression33.26450Akaikeinfocriterion9.929800Sumsquaredresid23237.06Schwarzcriterion10.02854Loglikelihood-112.1927Hannan-Quinncriter.9.954632F-statistic2859.544Durbin-Watsonstat0.550636Prob(F-statistic)0.000000在消费模型中,用AIC、SC准则判断是否新增解释变量DependentVariable:CONSPMethod:LeastSquaresSample(adjusted):19792000Includedobservations:22afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.GDPP0.2213590.0609733.6304620.0018CONSP(-1)0.4514080.1703182.6503800.0158C120.725336.513743.3062990.0037R-squared0.995403Meandependentvar928.4909AdjustedR-squared0.994919S.D.dependentvar372.6339S.E.ofregression26.56264Akaikeinfocriterion9.523012Sumsquaredresid13405.90Schwarzcriterion9.671791Loglikelihood-101.7531Hannan-Quinncriter.9.558060F-statistic2056.887Durbin-Watsonstat1.278902Prob(F-statistic)0.000000在消费模型中,用AIC、SC准则判断是否新增解释变量例:测度教育的回报问题wage:小时工资(元),educ:受教育的年数,exper:以年数计的工作经历。其他非观测因素:天生能力、职业道德等。•E(μ|educ,exper)=0,影响wage的其它因素与educ和exper无关。比如,如果μ是天生能力,这个假定就是要求,工人总体中受教育和工作经历的各种组合,其平均能力都相同。•Var(μ|educ,exper)=σ2,Var(wage|educ,exper)=σ2,如果这个方差随着两个解释变量中的任何一个变化,就出现了异方差。012eduwcexgeuperaDependentVariable:WAGEMethod:LeastSquaresSample:1526Includedobservations:526VariableCoefficientStd.Errort-StatisticProb.C-3.3905400.766566-4.4230230.0000EDUC0.6442720.05380611.973970.0000EXPER0.0700950.0109786.3852910.0000R-squared0.225162Meandependentvar5.896103AdjustedR-squared0.222199S.D.dependentvar3.693086S.E.ofregression3.257044Akaikeinfocriterion5.205204Sumsquaredresid5548.160Schwarzcriterion5.229531Loglikelihood-1365.969Hannan-Quinncriter.5.214729F-statistic75.98998Durbin-Watsonstat1.820274Prob(F-statistic)0.000000在教育回报模型中,Eviews估计结果:012ln()wageeducexperuDependentVariable:LOG(WAGE)Method:LeastSquaresSample:1526Includedobservations:526VariableCoefficientStd.Errort-StatisticProb.C0.2168540.1085951.9969090.0464EDUC0.0979360.00762212.848390.0000EXPER0.0103470.0015556.6533930.0000R-squared0.249343Meandependentvar1.623268AdjustedR-squared0.246473S.D.dependentvar0.531538S.E.ofregression0.461407Akaikeinfocriterion1.296614Sumsquaredresid111.3447Schwarzcriterion1.320940Loglikelihood-338.0094Hannan-Quinncriter.1.306139F-statistic86.86167Durbin-Watsonstat1.789452Prob(F-statistic)0.000000在教育回报对数模型中,Eviews估计结果:DependentVariable:LOG(WAGE)Method:LeastSquaresSample:1526Includedobservations:526VariableCoefficientStd.Errort-StatisticProb.C0.2843600.1041902.7292300.0066EDUC0.0920290.00733012.555250.0000EXPER0.0041210.0017232.3914370.0171TENURE0.0220670.0030947.1330700.