第五章虚拟存储器5.1虚拟存储器概述5.2请求分页存储管理方式5.3页面置换算法5.4“抖动”与工作集(自学内容)5.5请求分段存储管理方式5.1虚拟存储器的概述前面所介绍的各种存储器管理方式有一个共同的特点,即它们都要求将一个作业全部装入内存后方能运行,于是,出现了下面这样两种情况:(1)有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行。(2)有大量作业要求运行,但由于内存容量不足以容纳所有这些作业,只能将少数作业装入内存让它们先运行,而将其它大量的作业留在外存上等待。5.1.1常规存储器管理方式的特征和局部性原理1.常规存储器管理方式的特征(1)一次性。一次性地装入其全部程序,是一种对内存空间的浪费。(2)驻留性。作业装入内存后,便一直驻留在内存中,直至作业运行结束。尽管运行中的进程会因I/O而长期等待,或有的程序模块在运行过一次后就不再需要(运行)了,但它们都仍将继续占用宝贵的内存资源。由此可以看出,上述的一次性及驻留性,使许多在程序运行中不用或暂不用的程序(数据)占据了大量的内存空间,使得一些需要运行的作业无法装入运行。现在要研究的问题是:一次性及驻留性在程序运行时是否是必需的。2.局部性原理早在1968年,Denning.P就曾指出:程序在执行时将呈现出局部性规律,即在一较短的时间内,程序的执行仅局限于某个部分;相应地,它所访问的存储空间也局限于某个区域。他提出了下述几个论点:(1)程序执行时,除了少部分的转移和过程调用指令外,在大多数情况下仍是顺序执行的。(2)过程调用将会使程序的执行轨迹由一部分区域转至另一部分区域,但经研究看出,过程调用的深度在大多数情况下都不超过5。这就是说,程序将会在一段时间内都局限在这些过程的范围内运行。(3)程序中存在许多循环结构,这些虽然只由少数指令构成,但是它们将多次执行。(4)程序中还包括许多对数据结构的处理,如对数组进行操作,它们往往都局限于很小的范围内。局限性还表现在下述两个方面:(1)时间局限性。如果程序中的某条指令一旦执行,则不久以后该指令可能再次执行;如果某数据被访问过,则不久以后该数据可能再次被访问。产生时间局限性的典型原因是由于在程序中存在着大量的循环操作。(2)空间局限性。一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也将被访问,即程序在一段时间内所访问的地址,可能集中在一定的范围之内,其典型情况便是程序的顺序执行。3.虚拟存储器的基本工作情况基于局部性原理,应用程序在运行之前,没有必要全部装入内存,仅须将那些当前要运行的少数页面或段先装入内存便可运行,其余部分暂留在盘上。程序在运行时,如果它所要访问的页(段)已调入内存,便可继续执行下去;但如果程序所要访问的页(段)尚未调入内存(称为缺页或缺段),此时程序应利用OS所提供的请求调页(段)功能,将它们调入内存,以使进程能继续执行下去。如果此时内存已满,无法再装入新的页(段),则还须再利用页(段)的置换功能,将内存中暂时不用的页(段)调至盘上,腾出足够的内存空间后,再将要访问的页(段)调入内存,使程序继续执行下去。5.1.2虚拟存储器的定义和特征1.虚拟存储器的定义虚拟存储器是指具有请求调入和置换功能,能从逻辑上对内存容量加以扩充的一种存储器系统。一个虚拟存储器的最大容量是由计算机的地址结构确定的。如:若CPU的有效地址长度为32位,则程序可以寻址范围是0~(2^32)-1,即虚存容量为4GB。其逻辑容量由内存容量和外存容量之和决定,运行速度接近与内存速度,而每位的成本则接近于外存。2.虚拟存储器的特征(1)多次性:指一个作业被分成多次调入内存运行,亦即在作业运行时没有必要将其全部装入,只需将当前要运行的那部分程序和数据装入内存即可;以后每当要运行到尚未调入的那部分程序时,再将它调入。(2)对换性:指允许在作业的运行过程中进行换进、换出,亦即,在进程运行期间,允许将那些暂不使用的程序和数据,从内存调至外存的对换区(换出),待以后需要时再将它们从外存调至内存(换进);甚至还允许将暂时不运行的进程调至外存,待它们重又具备运行条件时再调入内存。换进和换出能有效地提高内存利用率。(3)虚拟性:虚拟性是指能够从逻辑上扩充内存容量,使用户所看到的内存容量远大于实际内存容量。虚拟性是以多次性和对换性为基础的,或者说,仅当系统允许将作业分多次调入内存,并能将内存中暂时不运行的程序和数据换至盘上时,才有可能实现虚拟存储器;而多次性和对换性又必须建立在离散分配的基础上。5.1.3虚拟存储器的实现方法1.分页请求系统这是在分页系统的基础上,增加了请求调页功能和页面置换功能所形成的页式虚拟存储系统。它允许只装入少数页面的程序(及数据),便启动运行。以后,再通过调页功能及页面置换功能,陆续地把即将要运行的页面调入内存,同时把暂不运行的页面换出到外存上。置换时以页面为单位。为了能实现请求调页和置换功能,系统必须提供必要的硬件支持和相应的软件。1)硬件支持①请求分页的页表机制,它是在纯分页的页表机制上增加若干项而形成的,作为请求分页的数据结构;②缺页中断机构,即每当用户程序要访问的页面尚未调入内存时,便产生一缺页中断,以请求OS将所缺的页调入内存;③地址变换机构,它同样是在纯分页地址变换机构的基础上发展形成的。2)实现请求分页的软件这里包括有用于实现请求调页的软件和实现页面置换的软件。它们在硬件的支持下,将程序正在运行时所需的页面(尚未在内存中的)调入内存,再将内存中暂时不用的页面从内存置换到磁盘上。2.请求分段系统这是在分段系统的基础上,增加了请求调段及分段置换功能后所形成的段式虚拟存储系统。它允许只装入少数段(而非所有的段)的用户程序和数据,即可启动运行。以后再通过调段功能和段的置换功能将暂不运行的段调出,同时调入即将运行的段。置换是以段为单位进行的。为了实现请求分段,系统同样需要必要的硬件支持。一般需要下列支持:(1)请求分段的段表机制。这是在纯分段的段表机制基础上增加若干项而形成的。(2)缺段中断机构。每当用户程序所要访问的段尚未调入内存时,产生一个缺段中断,请求OS将所缺的段调入内存。(3)地址变换机构。软件方面需要请求调段的软件和实现段置换的软件。5.2请求分页存储管理方式5.2.1请求分页中的硬件支持1.请求页表机制在请求分页系统中所需要的主要数据结构是页表。其基本作用仍然是将用户地址空间中的逻辑地址变换为内存空间中的物理地址。由于只将应用程序的一部分调入内存,还有一部分仍在盘上,故须在页表中再增加若干项,供程序(数据)在换进、换出时参考。在请求分页系统中的每个页表项如下所示:页号物理块号状态位P访问字段A修改位M外存地址各字段说明如下:(1)状态位P:用于指示该页是否已调入内存,供程序访问时参考。(2)访问字段A:用于记录本页在一段时间内被访问的次数,或记录本页最近已有多长时间未被访问,供选择换出页面时参考。(3)修改位M:表示该页在调入内存后是否被修改过。由于内存中的每一页都在外存上保留一份副本,因此,若未被修改,在置换该页时就不需再将该页写回到外存上,以减少系统的开销和启动磁盘的次数;若已被修改,则必须将该页重写到外存上,以保证外存中所保留的始终是最新副本。简言之,M位供置换页面时参考。(4)外存地址:用于指出该页在外存上的地址,通常是物理块号,供调入该页时参考。2.缺页中断机构在请求分页系统中,每当所要访问的页面不在内存时,便产生一缺页中断,请求OS将所缺之页调入内存。缺页中断作为中断,它们同样需要经历诸如保护CPU环境、分析中断原因、转入缺页中断处理程序进行处理、恢复CPU环境等几个步骤。但缺页中断又是一种特殊的中断,它与一般的中断相比,有着明显的区别,主要表现在下面两个方面:(1)在指令执行期间产生和处理中断信号。通常,CPU都是在一条指令执行完后,才检查是否有中断请求到达。若有,便去响应,否则,继续执行下一条指令。然而,缺页中断是在指令执行期间,发现所要访问的指令或数据不在内存时所产生和处理的。(2)一条指令在执行期间,可能产生多次缺页中断。在图5-1中示出了一个例子。如在执行一条指令COPYATOB时,可能要产生6次缺页中断,其中指令本身跨了两个页面,A和B又分别各是一个数据块,也都跨了两个页面。基于这些特征,系统中的硬件机构应能保存多次中断时的状态,并保证最后能返回到中断前产生缺页中断的指令处继续执行。涉及6次缺页中断的指令页面B:A:654321指令COPYATOB3.地址变换机构缺页中断处理保留CPU现场从外存中找到缺页内存满否?选择一页换出该页被修改否?将该页写回外存OS命令CPU从外存读缺页启动I/O硬件将一页从外存换入内存修改页表否是是否页表项在快表中?CPU检索快表访问页表否页在内存?修改访问位和修改位形成物理地址地址变换结束否页号>页表长度?开始程序请求访问一页产生缺页中断请求调页修改快表是越界中断是是请求分页系统中的地址变换过程图示出了请求分页系统中的地址变换过程。在进行地址变换时,首先去检索快表,试图从中找出所要访问的页。若找到,便修改页表项中的访问位。对于写指令,还须将修改位置成“1”,然后利用页表项中给出的物理块号和页内地址形成物理地址。地址变换过程到此结束。如果在快表中未找到该页的页表项时,应到内存中去查找页表,再从找到的页表项中的状态位P,来了解该页是否已调入内存。若该页已调入内存,这时应将此页的页表项写入快表,当快表已满时,应先调出按某种算法所确定的页的页表项,然后再写入该页的页表项;若该页尚未调入内存,这时应产生缺页中断,请求OS从外存把该页调入内存。5.2.2请求分页的内存分配1.最小物理块数的确定这里所说的最小物理块数,是指能保证进程正常运行所需的最小物理块数。当系统为进程分配的物理块数少于此值时,进程将无法运行。进程应获得的最少物理块数与计算机的硬件结构有关,取决于指令的格式、功能和寻址方式。对于某些简单的机器,若是单地址指令且采用直接寻址方式,则所需的最少物理块数为2。其中,一块是用于存放指令的页面,另一块则是用于存放数据的页面。如果该机器允许间接寻址时,则至少要求有三个物理块。对于某些功能较强的机器,其指令长度可能是两个或多于两个字节,因而其指令本身有可能跨两个页面,且源地址和目标地址所涉及的区域也都可能跨两个页面。正如前面所介绍的在缺页中断机构中要发生6次中断的情况一样,对于这种机器,至少要为每个进程分配6个物理块,以装入6个页面。2.物理块的分配策略1)固定分配局部置换(FixedAllocation,LocalReplacement)这是指基于进程的类型(交互型或批处理型等),或根据程序员、程序管理员的建议,为每个进程分配一定数目的物理块,在整个运行期间都不再改变。采用该策略时,如果进程在运行中发现缺页,则只能从该进程在内存的n个页面中选出一个页换出,然后再调入一页,以保证分配给该进程的内存空间不变。实现这种策略的困难在于:应为每个进程分配多少个物理块难以确定。若太少,会频繁地出现缺页中断,降低了系统的吞吐量;若太多,又必然使内存中驻留的进程数目减少,进而可能造成CPU空闲或其它资源空闲的情况,而且在实现进程对换时,会花费更多的时间。2)可变分配全局置换(VariableAllocation,GlobalReplacement)这可能是最易于实现的一种物理块分配和置换策略,已用于若干个OS中。在采用这种策略时,先为系统中的每个进程分配一定数目的物理块,而OS自身也保持一个空闲物理块队列。当某进程发现缺页时,由系统从空闲物理块队列中取出一个物理块分配给该进程,并将欲调入的(缺)页装入其中。这样,凡产生缺页(中断)的进程,都将获得新的物理块。仅当空闲物理块队列中的物理块用完时,OS才能从内存中选择一页调出,该页可能是系统中任一进程的页,这样,自然又会使那个进程的物理块减少,进而使其缺页率增加。3)可变分配局部置换(VariableAllocation,LocalReplacement)这同样是基于进程的类