生物化学名词解释

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.peptideunit肽单元参与肽键的6个原子、C、O、N、H、位于同一平面,和在平面上所处的位置为反式(trans)构型,此同一平面上的6个原子构成了所谓的肽单元(peptideunit)2.motif模序在蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,并具有相应的功能,被称为模序。3.proteindenature蛋白质变性。在某些理化因素作用下,致使蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物活性,称为蛋白质变性。4.glutathione谷胱甘肽由谷氨酸、半胱氨酸和甘氨酸组成的三肽,半胱氨酸的巯基是该三肽的功能基团。它是体内重要的还原剂,以保护体内蛋白质或酶分子等中的巯基免遭氧化。5.β-pleatedsheet在多肽链β折叠结构中,每个肽单元以Cα为旋转点,依次折叠成锯齿状结构,氨基酸残基侧链交替地位于锯齿状结构的上下方。两条以上肽链或一条肽链内的若干肽段的锯齿状结构可平行排列,其走向可相同,也可相反。并通过肽链间的肽键羰基氧和亚氨基氢形成氢键从而稳固β-折叠结构。6.chaperon分子伴侣是一类帮助新生多肽链正确折叠的蛋白质。它可逆的与未折叠肽段的疏水部分结合随后松开,如此重复进行可以防止错误的聚集发生,使肽链正确折叠。分子伴侣对于蛋白质分子中二硫键的正确形成起到重要作用。7.proteinquaternarystructure蛋白质的四级结构数个具有三级结构的多肽链,在三维空间作特定排布,并以非共价键维系其空间结构稳定,每一条多肽链称为亚基。这种蛋白质分子中各个亚基的空间排布及亚基间的相互作用,称为蛋白质的四级结构。8.结构域蛋白质的三级结构常可分割成1个和数个球状区域,折叠得较为紧密,各行其能,称为结构域。9.蛋白质等电点在某一pH溶液中,蛋白质分子所带的正电荷和负电荷相等,净电荷为零,此溶液的pH值,即为该蛋白质的等电点。10.α-螺旋α-螺旋为蛋白质二级结构类型之一。在α-螺旋中,多肽链主链围绕中心轴作顺时钟方向的螺旋式上升,即所谓右手螺旋。每3.6个氨基酸残基上升一圈,氨基酸残基的侧链伸向螺旋的外侧。α-螺旋的稳定依靠α-螺旋每个肽键的亚氨基氢和第四个肽键的羰基氧形成的氢键维系。11、变构效应.蛋白质空间构象的改变伴随其功能的变化,称为变构效应。具有变构效应的蛋白质称为变构蛋白,常有四级结构。以血红蛋白为例,一分子O2与一个血红素辅基结合,引起亚基构象变化,进而引起进相邻亚基构象变化,更易与O2结合。12.蛋白质三级结构蛋白质三级结构是指整条多肽链中全部氨基酸残基的相对空间位置,也即整条多肽链所有原子在三维空间的排布位置。蛋白质三级结构的形成和稳定主要靠次级键----疏水作用、离子键、氢键和VanderWaals力等。13.肽键一个氨基酸的氨基与另一个氨基酸的羧基脱去1分子H2O,所形成的酞胺键称为肽键。肽键的键长为0.132nm,具有一定程度的双键性质。参与肽键的6个原子位于同一平面。14.核小体核小体由DNA和组蛋白共同构成。组蛋白分子共有五种,分别称为H1,H2A,H2B,H3和H4。各两分子的H2A,H2B,H3和H4共同构成了核小体的核心,DNA双螺旋分子缠绕在这一核心上构成了核小体。15.碱基互补在DNA双链结构中,碱基位于内侧,两条链的碱基之间以氢键相接触。由于碱基结构的不同造成了其形成氢键的能力不同,因此产生了固有的配对方式,即腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C)。这种配对方式称为碱基互补。16.增色效应DNA的增色效应是指在其解链过程中,DNA的A260NM增加,与解链程度有一定的比例关系。17.Tm值DNA变性过程中,紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度(Tm)。在Tm时,核酸分子内50%的双链结构被解开。Tm值与DNA的分子大小和所含碱基中的G+C比例成正比。18.核糖体核糖体由rRNA与核糖体共同构成,分为大、小两个亚基。核糖体的功能是作为蛋白质合成的场所。核糖体的功能是为细胞内蛋白质的合成提供场所。在核糖体中,rRNA和核糖体蛋白共同形成了mRNA、tRNA与氨基酸的复合物、翻译起始因子、翻译延长因子等多种参与该合成过程的成分的识别和结合部位。19.核酶具有自我催化能力的RNA分子自身可以进行分子的剪接,这种具有催化作用的RNA被称为核酶。20.核酸分子杂交热变性的DNA经缓慢冷却过程中,具有碱基序列部分互补的不同的DNA之间或DNA与RNA之间形成杂化双键的现象称为核酸分子杂交。21.反密码环反密码环位于tRNA三叶草形二级结构的下方,中间的3个碱基称为反密码子,与mRNA上相应的三联体密码可形成碱基互补。不同的tRNA有不同的反密码子,蛋白质生物合成时,靠反密码子来辨认mRNA上相应的三联体密码,将氨基酸正确的安放在合成的肽链上。22.Z-DNA这种DNA是左手螺旋。在体内,不同构象的DNA在功能上有所差异,可能参与基因表达的调节和控制。23.固定化酶是将水溶性酶经物理或化学的方法处理后,成为不溶于水但仍具有酶活性的一种酶的衍生物。固定化酶在催化反应中以固相状态作用于底物,并保持酶的高度特异性和催化高效率。24.别构调节体内有的代谢物可以与某些酶分子活性中心外的某一部位可逆地结合,使酶发生变构并改变其催化活性。此结合部位称为别构部位或调节部位。对酶催化活性的这种调节方式称为别构调节。受别构调节的酶称做别构酶。导致别构效应的代谢物称做别构效应剂。25.酶的特异性酶对其所催化的底物具有较严格的选择性,即一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并产生一定的产物,酶的这种特性称为酶的特异性。根据酶对其底物结构选择的严格程度不同,酶的特异性可大致分为三种类型,即绝对特异性,相对特异性和立体异构特异性。26.酶的活性中心酶分子中与酶的活性密切相关的基团称做酶的必需基团。这些必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异的结合并将底物转化为产物。这一区域被称为酶的活性中心。酶活性中心内的必需基团有两种:一是结合基团,其作用是与底物相结合,使底物与酶的一定构象形成复合物;另一是催化基团,它的作用是影响底物中某些化学键的稳定性,催化底物发生化学反应并将其转变成产物。活性中心的必需基团可同时具有这两方面的功能。27.结合酶酶分子除含有氨基酸残基形成的多肽链外,还含有非蛋白部分。这类结合蛋白质的酶称为结合酶。其蛋白部分称为酶蛋白,非蛋白部分称为辅助因子,有的辅助因子是小分子有机化合物,有的是金属离子。酶蛋白与辅助因子结合形成的复合物称为全酶,只有全酶才有催化作用。28.最适温度酶促反应速度最快时的环境温度称为酶促反应的最适温度。29.Isoenzyme(同工酶)同工酶是指催化的化学反应相同,酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。30.Activators(激活剂)使酶由无活性变为有活性或使酶活性增加的物质称为酶的激活剂。激活剂大多为金属离子,少数为阴离子。也有许多有机化合物激活剂。31.Zymogens(酶原)有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下,这些酶的前体水解开一个或几个特定的肽键,致使构象发生改变,表现出酶的活性。这种无活性酶的前体称做酶原。酶原向酶的转化过程称为酶原的激活。酶原的激活实际上是酶的活性中心形成或暴露的过程。32.Initialvelocity(初速度)反应初速度是指反应刚刚开始时,各种影响酶促反应速度的因素尚未发挥作用,时间进程与产物的生成量呈直线关系时的反应速度。此时,酶促反应速度与酶的浓度成正比。33.Michaelisconstant(米氏常数,Km)米氏常数是单底物反应中酶与底物可逆地生成中间产物和中间产物转化为产物这三个反应的速度常数的综合。即:k1k3k2+k3E+S→ES→E+PKm=------k2k1米氏常数等于反应速度为最大速度一半时的底物浓度。34.Allostericcooperation(别构协同效应)别构酶分子中常含有多个(偶数)亚基,酶分子的催化部位(活性中心)和调节部位有的在同一亚基内,也有的不在同一亚基内。含有催化部位的亚基称为催化亚基;含有调节部位的亚基称为调节亚基。当第一个亚基与效应剂结合后,此亚基发生构象改变,并将此效应传递到相邻的亚基,使相邻的亚基也发生同样的构象改变,从而改变这一相邻亚基对效应剂的亲和力。这种效应称为协同效应。如果第一个效应剂与酶的结合,使第二个效应剂与酶的结合变得容易,这种协同效应称为正协同效应。相反,如果这种协同效应使第二个效应剂与酶的结合变得困难,即亲和力变小,则称此协同效应为负协同效应。35.glycolysis糖酵解在缺氧情况下,葡萄糖分解为乳酸的过程称为糖酵解。36.glycolyticpathway酵解途径葡萄糖分解为丙酮酸的过程称为酵解途径。37.tricarboxylicacidcycle(TAC)三羧酸循环线粒体内由乙酰CoA与草酰乙酸缩合成柠檬酸开始,经反复脱氢、脱羧再生成草酰乙酸的循环反应过程称为三羧酸循环。38.citricacidcycle柠檬酸循环即为三羧酸循环(见上述)。39.Pasteureffect巴斯德效应糖有氧氧化抑制糖酵解的现象称为Pasteureffect。40.pentosephosphatepathway(PPP)磷酸戊糖途径(或称磷酸戊糖旁路)6-磷酸葡萄糖经氧化反应及一系列基团转移反应,生成NADPH、CO2、核糖及6-磷酸果糖和3-磷酸甘油醛而进入酵解途径。41.glycogenesis糖原合成由葡萄糖合成糖原的过程称为糖原合成。42.gluconeogenesis糖异生由非糖化合物转变为葡萄糖或糖原的过程称为糖异生。43.substratecycle底物循环在代谢过程中由催化单向反应的酶催化两种底物互变的循环称为底物循环。44.lacticacidcycle乳酸循环在肌肉中葡萄糖经糖酵解生成乳酸,乳酸经血液运到肝脏,肝脏将乳酸异生成葡萄糖。葡萄糖释入血液后又被肌肉摄取,这种代谢循环途径称为乳酸循环。45.bloodsugar血糖血液中的葡萄糖称为血糖。其正常水平为3.89~6.llmmol/L(70~110mg/dl)。46.三碳途径葡萄糖先分解成丙酮酸、乳酸等三碳化合物,再运至肝脏异生成糖原的过程称为三碳途径或间接途径。47.肝糖原分解肝糖原分解为葡萄糖的过程。48.级联放大系统经一系列酶促反应将激素信号放大的连锁反应称为级联放大系统。49.Krebs循环即为三羧酸循环(见上述)。50.糖有氧氧化葡萄糖在有氧条件下氧化生成CO2和H2O并释放能量的反应过程。51.糖异生途径从丙酮酸生成葡萄糖的具体反应过程称为糖异生途径。52.糖原累积症由于先天性缺乏与糖原代谢有关的酶类,使体内有大量糖原堆积的遗传性代谢病。53.活性葡萄糖在葡萄糖合成糖原的过程中,UDPG中的葡萄糖基。54.Cori循环即为乳酸循环(见上述)。55.蚕豆病由于缺乏6-磷酸葡萄糖脱氢酶,不能经磷酸戊糖途径得到充足的NADPH+H+,使谷胱甘肽保持于还原状态,常在进食蚕豆后诱发溶血性黄疸称为蚕豆病。56.高血糖空腹血糖浓度高于7.22mmol/L(130mg%)称为高血糖。57.低血糖空腹血糖浓度低于3.89mmol/L(70mg%)称为低血糖。58脂类脂类是脂肪和类脂的总称,是一类不溶于水而溶于有机溶剂,并能为机体利用的有机化合物。59血脂血浆所含脂类,包括甘油三酯、磷脂、胆固醇及其酯,以及游离脂肪酸等。60.脂肪动员脂肪细胞内贮存的脂肪经脂肪酶催化水解,释放出甘油和脂肪酸,经血液运输到各组织摄取利用的过程。61.必需脂肪酸某些不饱和脂肪酸如亚油酸、亚麻酸、花生四烯酸机体自身不能合成,但又是不可缺少的营养素故称为必需脂肪酸。62.酮体ketonebodies脂肪酸在肝中代谢不完全,经β-羟丁酸、丙酮等中间产物

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功