分类号:U463.510710-2012125063硕士学位论文基于AMESim的纯电动汽车复合制动系统仿真研究王权导师姓名职称高子渝副教授申请学位级别工学硕士学科专业名称机械电子工程论文提交日期2014年12月2日论文答辩日期2014年12月24日学位授予单位长安大学SimulationontheCompoundBrakingSystemforanEVBasedonAMESimADissertationSubmittedfortheDegreeofMasterCandidate:QuanWangSupervisor:AssociateProf.ZiyuGaoChang’anUniversity,Xi’an,Chinai摘要电机再生制动技术可回收制动能量进而提高电动汽车的续驶里程,现已成为电动汽车技术领域的一个重大突破口。传统的液压制动系统加进再生制动系统后必定会对原车辆的制动性能有所影响,因此需要对液压制动力和再生制动力协调控制,在保证车辆制动效能及制动稳定的同时,实现最大化的能量回收。本文针对所研究的纯电动汽车,在保证电动汽车制动过程安全、稳定和平顺的前提下,设计了一套能够实现制动能量回收的复合制动系统。提出了三套再生制动分配策略,并利用在AMESim仿真平台上搭建的电动汽车复合制动整车系统模型,对所提出的串联再生制动分配策略和并联再生制动分配策略进行不同制动强度、不同初始速度及不同路况的仿真研究。仿真结果表明,本模型能很好地模拟车辆的制动过程,且两策略都能在保证制动性能的同时,实现能量的回收。能量回收率随着制动强度的增加而减小,串联再生制动分配策略的最小能量回收率为19%,而并联再生制动分配策略最小接近2%。当制动强度大于0.5时,串联再生制动分配策略的能量回收率开始高于并联再生制动分配策略。电动汽车能量回收率的影响因素分别有制动强度,路面附着系数和车体初始速度,其中制动强度的影响最大,路面附着系数次之,车体初始速度最小。关键词:纯电动汽车,复合制动系统,分配策略,系统模型,制动强度,能量回收率iiAbstractBecausethemotorregenerativebrakingsystemcanrecyllethebrakeenergyandincreasethemileageofanelectricvehicle,ithasbecomeamajorbreakthroughatthetechnicalfieldofanelectricvehicle.Theoriginalvehiclebrakeperformancemustbeaffectedaftertheregenerativebrakesystemiscomposedtoconventionalhydraulicbrakesystem.Therefore,thehydraulicbrakeforceandregenerativebrakeforceneedtobecoordinatecontrolledtoensuringthevehiclebrakeperformance,whilemaximizingtheenergyrecoveryefficiency.So,accordingtothepureelectricvehicle,thispaperdesignedasetofcompoundbrakesystemwhichcanrecyllebrakeenergyunderthepremiseofensuringthesafety,stableandsmoothofelectricvehiclebrakeprocess.Tothisend,thispaperputforwardthreesetsofregenerativebrakeforceallocationstrategy.ThispaperestablishedamodelofelectricvehiclecompoundbrakesystemontheAMESimsimulationplatform.Inviewoftheseriesregenerativebrakeforcedistributionstrategyandtheparallelregenerativebrakeforcedistributionstrategyisproposed,simulationanalysisonthedifferentbrakestrength,differentinitialspeedsanddifferentroadconditions.Theresultsshowedthatthemodelcansimulatethebrakeprocessofthevehicleandthetwostrategyescanwellensurebrakingperformancewhileachievingenergyrecovery.Theenergyrecoveryrategraduallydecreaseswiththeincreaseofthebrakestrength.Theminimumenergyrecoveryrateofseriesregenerativebrakedistributionstrategyis19%andtheparallelregenerativebrakedistributionstrategyiscloseto2%.Whenthebrakestrengthisgreaterthan0.5,theenergyrecoveryrateofseriesregenerativebrakingallocationstrategybeganhigherthantheparallelregenerativebrakingallocationstrategy.Factorsofelectricvehiclesenergyrecoveryefficiencyarebrakestrength,roadadhesioncoefficientandtheinitialvelocityofthevehiclebody,wichthegreatestimpactisthebrakestrength,followedbyroadadhesioncoefficient,andthesmallestistheinitialvelocityofthevehicle.Keywords:EV;compoundbrakingsystem;allocationstrategy;systemmodel;brakestrength;energyrecoveryrateiii目录第一章绪论..............................................................11.1选题背景............................................................11.2电动车概述..........................................................11.3复合制动概述........................................................21.3.1再生制动.......................................................21.3.2再生制动的意义.................................................21.3.3复合制动.......................................................31.3.4复合制动的发展现状.............................................41.4本文主要研究内容....................................................8第二章复合制动系统方案设计..............................................92.1电动汽车车体结构概述...............................................102.2复合制动系统所需功能...............................................112.3复合制动系统的方案确定.............................................112.3.1制动踏板模拟器................................................122.3.2扭矩控制器....................................................122.3.3电机再生制动系统..............................................132.3.4蓄电池........................................................172.5本章小结...........................................................17第三章复合制动控制策略.................................................183.1电动汽车制动力学分析...............................................183.1.1整车制动力....................................................193.1.2电机再生制动力................................................193.1.3前后轮制动力分配规则..........................................203.2串联再生制动分配策略...............................................233.3并联再生制动分配策略...............................................263.4最大化能量回收分配策略.............................................283.5本章小结...........................................................30第四章复合制动系统建模.................................................314.1AMESim软件介绍...................................................31iv4.2再生制动整车系统模型...............................................314.2.1制动踏板模型..................................................334.2.2扭矩控制器模型................................................344.2.3带ABS防抱死功能的液压制动系统模型...........................364.2.4电机再生制动系统模型..........................................394.2.5车体结构模型..................................................414.3本