课时作业(八十一)(第二次作业)1.(2010·新课标全国卷)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100B.200C.300D.400答案B解析记“不发芽的种子数为ξ”,则ξ~B(1000,0.1),所以E(ξ)=1000×0.1=100,而X=2ξ,故E(X)=E(2ξ)=2E(ξ)=200,故选B.2.(2013·岳阳联考)一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、b、c∈(0,1)),已知他投篮一次得分的数学期望为2(不计其他得分情况),则ab的最大值为()A.148B.124C.112D.16答案D解析设投篮得分为随机变量X,则X的分布列为X320PabcE(X)=3a+2b=2≥23a×2b,所以ab≤16,当且仅当3a=2b时,等号成立.3.随机变量ξ的分布列如下:ξ-101Pabc其中a,b,c成等差数列,若E(ξ)=13,则D(ξ)的值是()A.13B.23C.59D.79答案C解析∵a,b,c成等差数列,∴2b=a+c.又a+b+c=1,且E(ξ)=-1×a+1×c=c-a=13.联立三式得a=16,b=13,c=12,∴D(ξ)=(-1-13)2×16+(0-13)2×13+(1-13)2×12=59.4.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.答案12,25解析D(ξ)=100p(1-p)≤100·(p+1-p2)2=25,当且仅当p=1-p.即p=12时,D(ξ)最大为25.5.某保险公司新开设了一项保险业务,若在一年内事件E发生,该公司要赔偿a元,设一年内事件E发生的概率为p,为使公司收益的期望值等于a的10%,公司应要求投保人交的保险金为________元.答案(0.1+p)a解析设要求投保人交x元,公司的收益额ξ作为随机变量,则p(ξ=x)=1-p,p(ξ=x-a)=p.故E(ξ)=x(1-p)+(x-a)p=x-ap.∴x-ap=0.1a,∴x=(0.1+p)a.6.(2012·沈阳模拟)设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22.用X表示坐标原点到l的距离,则随机变量X的数学期望E(X)=________.答案47解析当l的斜率为±2时,直线方程为±22x-y+1=0,此时d1=13;k=±3时,d2=12;k=±52时,d3=23;k=0时,d4=1.由等可能性事件的概率可得分布列如下:X1312231P27272717∴E(X)=13×27+12×27+23×27+1×17=47.7.某制药厂新研制出一种抗感冒药,经临床试验疗效显著,但由于每位患者的身体素质不同,可能有少数患者服用后会出现轻微不良反应,甲、乙、丙三位患者均服用了此抗感冒药,若他们出现轻微不良反应的概率分别是15,13,14.(1)求恰好有一人出现轻微不良反应的概率;(2)求至多有两人出现轻微不良反应的概率;(3)设出现轻微不良反应的人数为ξ,求ξ的分布列和数学期望.解析(1)患者甲出现轻微不良反应,患者乙、丙没有出现轻微不良反应的概率为15×23×34=110;患者乙出现轻微不良反应,患者甲、丙没有出现轻微不良反应的概率为45×13×34=15;患者丙出现轻微不良反应,患者甲、乙没有出现轻微不良反应的概率为45×23×14=215,所以,恰好有一人出现轻微不良反应的概率为P1=110+15+215=1330.(2)有两人出现轻微不良反应的概率P2=15×13×34+45×13×14+15×23×14=120+115+130=320.三人均没有出现轻微不良反应的概率P0=45×23×34=25,所以,至多有两人出现轻微不良反应的概率为25+1330+320=5960.(3)依题意知,ξ的可能取值为0,1,2,3,由(1)(2)得,P(ξ=0)=25,P(ξ=1)=1330,P(ξ=2)=320,P(ξ=3)=1-25-1330-320=160.于是ξ的分布列为ξ0123P251330320160ξ的数学期望E(ξ)=0×25+1×1330+2×320+3×160=4760.8.某校举行一次以“我为教育发展做什么”为主题的演讲比赛,比赛分为初赛、复赛、决赛三个阶段,已知某选手通过初赛、复赛、决赛的概率分别为23、13、14,且各阶段通过与否相互独立.(1)求该选手在复赛阶段被淘汰的概率;(2)设该选手比赛的次数为ξ,求ξ的分布列和数学期望.解析(1)记“该选手通过初赛”为事件A,“该选手通过复赛”为事件B,“该选手通过决赛”为事件C,则P(A)=23,P(B)=13,P(C)=14.所以所求的概率P=P(AB)=P(A)P(B)=23×(1-13)=49.(2)依题意知ξ的可能取值为1,2,3.P(ξ=1)=P(A)=1-23=13,P(ξ=2)=P(AB)=P(A)P(B)=23×(1-13)=49,P(ξ=3)=P(AB)=P(A)P(B)=23×13=29.ξ的分布列为ξ123P134929ξ的数学期望E(ξ)=1×13+2×49+3×29=179.9.(2013·吉林实验中学一模)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试.①已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;②学校决定在这6名学生中随机抽取2名学生接受考官D的面试,第4组中有ξ名学生被考官D面试,求ξ的分布列和数学期望.解析(1)第三组的频率为0.06×5=0.3;第四组的频率为0.04×5=0.2;第五组的频率为0.02×5=0.1.(2)①设M:学生甲和学生乙同时进入第二轮面试,则P(M)=C128C330=1145.②P(ξ=i)=Ci2C2-i4C26(i=0,1,2),ξ的分布列为ξ012P25815115E(ξ)=815+215=23.10.(2012·福建理)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:品牌甲乙首次出现故障时间x(年)0x≤11x≤2x20x≤2x2轿车数量(辆)2345545每辆利润(万元)1231.82.9将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.解析(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A,则P(A)=2+350=110.(2)依题意得,X1的分布列为X1123P125350910X2的分布列为X21.82.9P110910(3)由(2)得,E(X1)=1×125+2×350+3×910=2.86(万元),E(X2)=1.8×110+2.9×910=2.79(万元).因为E(X1)E(X2),所以应生产甲品牌轿车.11.(2012·陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:办理业务所需的时间(分)12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.解析设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布列如下:Y12345P0.10.40.30.10.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则事件A对应三种情形:①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=P(Y=1)P(Y=3)+P(Y=3)P(Y=1)+P(Y=2)P(Y=2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)方法一X所有可能的取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=P(Y=1)P(Y1)+P(Y=2)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;所以X的分布列为X012P0.50.490.01E(X)=0×0.5+1×0.49+2×0.01=0.51.方法二X的所有可能取值为0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y2)=0.5;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;P(X=1)=1-P(X=0)-P(X=2)=0.49;所以X的分布列为X012P0.50.490.01E(X)=0×0.5+1×0.49+2×0.01=0.51.1.某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P(ξ=1)等于()A.0B.12C.13D.23答案D解析设失败率为p,则成功率为2p,分布列为ξ01Pp2p由p+2p=1,得p=13,∴2p=23.2.(2012·衡水调研卷)设ξ是一个离散型随机变量,其分布列为ξ-101P121-2qq2则q的值为()A.1B.1±22C.1+22D.1-22答案D解析由分布列的性质,有1-2q≥0,q2≥0,12+1-2q+q2=1,解得q=1-22.或由1-2q≥0⇒q≤12,可排除A、B、C.3.(2012·安徽)某单位招聘面试,每次从试题库中随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类型试题和一道B类型试题入库,此次调题工作结束,若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现有n+m道试题,其中有n道A类型试题和m道B类型试题.以X表示两次调题工作完成后,试题库中A类型试题的数量.(1)求X=n+2的概率;(2)设m=n,求X的分布列和均值(数学期望).解析以Ai表示第i次调题调用到A类型试题,i=1,2.(1)P(X=n+2)=P(A1A2)=nm+n·n+1m+n+2=nn+1m+nm+n+2.(2)X的可能取值为n,n+1,n+2.P(X=n)=P(A1A2)=nn+n·nn+n=14.P(X=n+1)=P(A1A2)+P(A1A2)=nn+n·n+1n+n+2+nn+n·nn+n=12,P(X=n+2)=P(A1A2)=nn+n·n+1n+n+2=14,从而X的分布列是:Xnn+1n+2P141214E(X)=n×14+(n+1)×12+(n+2)×14=n+1.4.(2012·四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为110和p.(1)若在任意时刻至少有一个系统不