[基础达标]一、选择题1.(2014·武汉市调研)已知数列{an}是等差数列,a1+a7=-8,a2=2,则数列{an}的公差d=()A.-1B.-2C.-3D.-4解析:选C.由题意可得a1+a1+6d=-8,a1+d=2,解得a1=5,d=-3,故选C.2.(2014·辽宁大连市双基测试)设{an}是公差为正数的等差数列,若a1+a2+a5=15,且a1a2a3=80,则a11+a12+a13等于()A.120B.105C.90D.75解析:选B.设数列{an}的公差为d,由a1+a2+a3=15,得a2=5,由a1a2a3=80,得a1a3=(5-d)(5+d)=16,故25-d2=16,d=3,则a1=2,a11+a12+a13=3a1+33d=6+99=105.故选B.3.(2014·安徽望江中学模拟)设数列{an}是公差d0的等差数列,Sn为其前n项和,若S6=5a1+10d,则Sn取最大值时,n=()A.5B.6C.5或6D.6或7解析:选C.由题意得S6=6a1+15d=5a1+10d,所以a6=0,故当n=5或6时,Sn最大,故选C.4.(2013·高考辽宁卷)下面是关于公差d0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列{ann}是递增数列;p4:数列{an+3nd}是递增数列.其中的真命题为()A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析:选D.因为d0,所以an+1an,所以p1是真命题.因为n+1n,但是an的符号不知道,所以p2是假命题.同理p3是假命题.由an+1+3(n+1)d-an-3nd=4d0,所以p4是真命题.5.(2014·浙江省名校联考)已知每项均大于零的数列{an}中,首项a1=1且前n项和Sn满足SnSn-1-Sn-1Sn=2SnSn-1(n∈N*且n≥2),则a81=()A.638B.639C.640D.641解析:选C.由已知SnSn-1-Sn-1Sn=2SnSn-1可得,Sn-Sn-1=2,∴{Sn}是以1为首项,2为公差的等差数列,故Sn=2n-1,Sn=(2n-1)2,∴a81=S81-S80=1612-1592=640,故选C.二、填空题6.(2013·高考广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.解析:法一:a3+a8=2a1+9d=10,3a5+a7=4a1+18d=2(2a1+9d)=2×10=20.法二:a3+a8=2a3+5d=10,3a5+a7=4a3+10d=2(2a3+5d)=2×10=20.答案:207.南北朝时,在466~484年,张邱建写了一部算经,即《张邱建算经》,在这本算经中,张邱建对等差数列的研究有一定的贡献,例如算经中有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给”,则每一等人比下一等人多得________斤金.(不作近似计算)解析:设第十等人得金a1斤,第九等人得金a2斤,以此类推,第一等人得金a10斤,则数列{an}构成等差数列,设公差为d,则每一等人比下一等人多得d斤金.由题意,a8+a9+a10=4,a1+a2+a3+a4=3,即3a1+24d=4,4a1+6d=3,解得d=778.所以每一等人比下一等人多得778斤金.答案:7788.(2014·河南三市调研)设数列{an}的通项公式为an=2n-10(n∈N*),则|a1|+|a2|+…+|a15|=________.解析:由an=2n-10(n∈N*)知{an}是以-8为首项,2为公差的等差数列,又由an=2n-10≥0得n≥5,∴当n5时,an0,当n≥5时,an≥0,∴|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4)+(a5+a6+…+a15)=20+110=130.答案:130三、解答题9.(2014·浙江温州市适应性测试)已知{an}是递增的等差数列,a1=2,a22=a4+8.(1)求数列{an}的通项公式;(2)若bn=an+2an,求数列{bn}的前n项和Sn.解:(1)设等差数列的公差为d,d0.由题意得,(2+d)2=2+3d+8,即d2+d-6=(d+3)(d-2)=0,得d=2.故an=a1+(n-1)·d=2+(n-1)·2=2n,得an=2n.(2)bn=an+2an=2n+22n.Sn=b1+b2+…+bn=(2+22)+(4+24)+…+(2n+22n)=(2+4+6+…+2n)+(22+24+…+22n)=2+2n·n2+4·1-4n1-4=n(n+1)+4n+1-43.10.已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=a2n+n-4(n∈N*).(1)求证:数列{an}为等差数列;(2)求数列{an}的通项公式.解:(1)证明:当n=1时,有2a1=a21+1-4,即a21-2a1-3=0,解得a1=3(a1=-1舍去).当n≥2时,有2Sn-1=a2n-1+n-5,又2Sn=a2n+n-4,两式相减得2an=a2n-a2n-1+1,即a2n-2an+1=a2n-1,也即(an-1)2=a2n-1,因此an-1=an-1或an-1=-an-1.若an-1=-an-1,则an+an-1=1.而a1=3,所以a2=-2,这与数列{an}的各项均为正数相矛盾,所以an-1=an-1,即an-an-1=1,因此数列{an}为等差数列.(2)由(1)知a1=3,d=1,所以数列{an}的通项公式an=3+(n-1)×1=n+2,即an=n+2.[能力提升]一、选择题1.已知Sn是等差数列{an}的前n项和,S100并且S11=0,若Sn≤Sk对n∈N*恒成立,则正整数k构成的集合为()A.{5}B.{6}C.{5,6}D.{7}解析:选C.在等差数列{an}中,由S100,S11=0得,S10=10a1+a1020⇒a1+a100⇒a5+a60,S11=11a1+a112=0⇒a1+a11=2a6=0,故可知等差数列{an}是递减数列且a6=0,所以S5=S6≥Sn,其中n∈N*,所以k=5或6,故选C.2.(2014·黄冈市高三年级质量检测)等差数列{an}前n项和为Sn,已知(a1006-1)3+2013(a1006-1)=1,(a1008-1)3+2013(a1008-1)=-1,则()A.S2013=2013,a1008>a1006B.S2013=2013,a1008<a1006C.S2013=-2013,a1008>a1006D.S2013=-2013,a1008<a1006解析:选B.由(a1006-1)3+2013(a1006-1)=1①,得(a1006-1)·[(a1006-1)2+2013]=1,所以a1006-1>0,即a1006>1.由(a1008-1)3+2013(a1008-1)=-1②.得(a1008-1).[(a1008-1)2+2013]=-1,所以a1008-1<0,即a1008<1,故a1008<a1006.①+②得(a1006-1+a1008-1)[(a1006-1)2-(a1006-1)(a1008-1)+(a1008-1)2]=0,因为a1006-1>0,a1008-1<0,所以(a1006-1)2-(a1006-1)(a1008-1)+(a1008-1)2>0.故a1006-1+a1008-1=0,故a1006+a1008=2.故S2013=20132(a1+a2013)=20132(a1006+a1008)=2013.故选B.二、填空题3.(2014·湖北荆门调研)已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是________.解析:设数列{an}为该等差数列,依题意得a1+an=124+1564=70.∵Sn=210,Sn=na1+an2,∴210=70n2,∴n=6.答案:64.(2014·福建龙岩质检)已知数列{an}的首项为2,数列{bn}为等差数列且bn=an+1-an(n∈N*).若b2=-2,b7=8,则a8=________.解析:∵{bn}为等差数列,且b2=-2,b7=8,设其公差为d,∴b7-b2=5d,即8+2=5d.∴d=2.∴bn=-2+(n-2)×2=2n-6.∴an+1-an=2n-6.由a2-a1=2×1-6,a3-a2=2×2-6,…,an-an-1=2×(n-1)-6,累加得:an-a1=2×(1+2+…+n-1)-6(n-1)=n2-7n+6,∴an=n2-7n+8.∴a8=16.答案:16三、解答题5.(2014·山东济南模拟)设同时满足条件:①bn+bn+22≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界”数列.(1)若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn;(2)判断(1)中的数列{Sn}是否为“特界”数列,并说明理由.解:(1)设等差数列{an}的公差为d,则a1+2d=4,S3=a1+a2+a3=3a1+3d=18,解得a1=8,d=-2,∴Sn=na1+nn-12d=-n2+9n.(2)由Sn+Sn+22-Sn+1=Sn+2-Sn+1-Sn+1-Sn2=an+2-an+12=d2=-1<0,得Sn+Sn+22<Sn+1,故数列{Sn}适合条件①.而Sn=-n2+9n=-n-922+814(n∈N*),则当n=4或5时,Sn有最大值20,即Sn≤20,故数列{Sn}适合条件②.综上,数列{Sn}是“特界”数列.6.(选做题)(2014·广东深圳质检)各项均为正数的数列{an}满足a2n=4Sn-2an-1(n∈N*),其中Sn为{an}的前n项和.(1)求a1,a2的值;(2)求数列{an}的通项公式;(3)是否存在正整数m、n,使得向量a=(2an+2,m)与向量b=(-an+5,3+an)垂直?说明理由.解:(1)当n=1时,a21=4S1-2a1-1,即(a1-1)2=0,解得a1=1.当n=2时,a22=4S2-2a2-1=4a1+2a2-1=3+2a2,解得a2=3或a2=-1(舍去).(2)a2n=4Sn-2an-1,①a2n+1=4Sn+1-2an+1-1.②②-①得:a2n+1-a2n=4an+1-2an+1+2an=2(an+1+an),即(an+1-an)(an+1+an)=2(an+1+an).∵数列{an}各项均为正数,∴an+1+an0,an+1-an=2,∴数列{an}是首项为1,公差为2的等差数列.∴an=2n-1.(3)∵an=2n-1,∴a=(2an+2,m)=(2(2n+3),m)≠0,b=(-an+5,3+an)=(-(2n+9),2(n+1))≠0,∴a⊥b⇔a·b=0⇔m(n+1)=(2n+3)(2n+9)=[2(n+1)+1][2(n+1)+7]⇔m(n+1)=4(n+1)2+16(n+1)+7⇔m=4(n+1)+16+7n+1.∵m,n∈N*,∴n+1=7,m=4×7+16+1,即n=6,m=45.∴当n=6,m=45时,a⊥b.