专题三数列第1讲数列的通项与求和问题一、选择题1.在等差数列{an}中,若a2+a3=4,a4+a5=6,则a9+a10等于().A.9B.10C.11D.12解析设等差数列{an}的公差为d,则有(a4+a5)-(a2+a3)=4d=2,所以d=12.又(a9+a10)-(a4+a5)=10d=5,所以a9+a10=(a4+a5)+5=11.答案C2.(2014·嘉兴教学测试)在各项均为正数的等比数列{an}中,a3=2-1,a5=2+1,则a23+2a2a6+a3a7=().A.4B.6C.8D.8-42解析在等比数列{an}中,a3a7=a25,a2a6=a3a5,所以a23+2a2a6+a3a7=a23+2a3a5+a25=(a3+a5)2=(2-1+2+1)2=(22)2=8.答案C3.已知数列112,314,518,7116,…,则其前n项和Sn为().A.n2+1-12nB.n2+2-12nC.n2+1-12n-1D.n2+2-12n-1解析因为an=2n-1+12n,则Sn=n1+2n-12+1-12n·121-12=n2+1-12n.答案A4.(2014·烟台一模)在等差数列{an}中,a1=-2012,其前n项和为Sn,若S20122012-S1010=2002,则S2014的值等于().A.2011B.-2012C.2014D.-2013解析等差数列中,Sn=na1+nn-12d,Snn=a1+(n-1)d2,即数列Snn是首项为a1=-2012,公差为d2的等差数列;因为S20122012-S1010=2002,所以,(2012-10)d2=2002,d2=1,所以,S2014=2014[(-2012)+(2014-1)×1]=2014,选C.答案C5.(2014·合肥质量检测)数列{an}满足a1=2,an=an+1-1an+1+1,其前n项积为Tn,则T2014=().A.16B.-16C.6D.-6解析由an=an+1-1an+1+1,得an+1=1+an1-an.∵a1=2,∴a2=-3,a3=-12,a4=13,a5=2,a6=-3.故数列{an}具有周期性,周期为4,∵a1a2a3a4=1,∴T2014=T2=a1a2=2×(-3)=-6.答案D二、填空题6.(2014·衡水中学调研)已知数列{an}满足a1=12,an-1-an=an-1annn-1(n≥2),则该数列的通项公式an=________.解析∵an-1-an=an-1annn-1(n≥2),∴an-1-anan-1an=1nn-1,∴1an-1an-1=1n-1-1n,∴1a2-1a1=11-12,1a3-1a2=12-13,…,1an-1an-1=1n-1-1n,∴1an-1a1=1-1n,又∵a1=12,∴1an=3-1n,∴an=n3n-1.答案n3n-17.设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于________.解析由Sm-1=-2,Sm=0,Sm+1=3,得am=2,am+1=3,所以d=1,因为Sm=0,故ma1+mm-12d=0,故a1=-m-12,因为am+am+1=5,故am+am+1=2a1+(2m-1)d=-(m-1)+2m-1=5,即m=5.答案58.(2014·广东卷)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=________.解析∵a10a11+a9a12=2a10a11=2e5,∴a10·a11=e5,lna1+lna2+…+lna20=10ln(a10·a11)=10·lne5=50.答案50三、解答题9.(2014·北京卷)已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.解(1)设等差数列{an}的公差为d,由题意得d=a4-a13=12-33=3.所以an=a1+(n-1)d=3n(n=1,2,…).设等比数列{bn-an}的公比为q,由题意得q3=b4-a4b1-a1=20-124-3=8,解得q=2.所以bn-an=(b1-a1)qn-1=2n-1.从而bn=3n+2n-1(n=1,2,…).(2)由(1)知bn=3n+2n-1(n=1,2,…).数列{3n}的前n项和为32n(n+1),数列{2n-1}的前n项和为1-2n1-2=2n-1.所以,数列{bn}的前n项和为32n(n+1)+2n-1.10.(2014·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.(1)令cn=anbn,求数列{cn}的通项公式;(2)若bn=3n-1,求数列{an}的前n项和Sn.解(1)因为anbn+1-an+1bn+2bn+1bn=0,bn≠0(n∈N*),所以an+1bn+1-anbn=2,即cn+1-cn=2.所以数列{cn}是以首项c1=1,公差d=2的等差数列,故cn=2n-1.(2)由bn=3n-1知an=cnbn=(2n-1)3n-1,于是数列{an}前n项和Sn=1·30+3·31+5·32+…+(2n-1)·3n-1,3Sn=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2Sn=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,所以Sn=(n-1)3n+1.11.(2014·烟台一模)已知数列{an}前n项和为Sn,首项为a1,且12,an,Sn成等差数列.(1)求数列{an}的通项公式;(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求数列1bn的前n项和.解(1)∵12,an,Sn成等差数列,∴2an=Sn+12,当n=1时,2a1=S1+12,∴a1=12,当n≥2时,Sn=2an-12,Sn-1=2an-1-12,两式相减得:an=Sn-Sn-1=2an-2an-1,∴anan-1=2,所以数列{an}是首项为12,公比为2的等比数列,即an=12×2n-1=2n-2.(2)∵bn=(log2a2n+1)×(log2a2n+3)=(log222n+1-2)×(log222n+3-2)=(2n-1)(2n+1),∴1bn=12n-1×12n+1=1212n-1-12n+1,∴数列1bn的前n项和Tn=1b1+1b2+1b3+…+1bn=121-13+13-15+…+12n-1-12n+1=121-12n+1=n2n+1.