2015届中考数学总复习二十六图形的平移精练精析1华东师大版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

文档来源:弘毅教育园丁网数学第一站图形的变化——图形的平移1一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cmB.18cmC.20cmD.22cm2.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直3.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)4如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12B.16C.20D.245如图,已知∠EFD=∠BCA,BC=EF,AF=DC.若将△ABC沿AD向右平移,使点C与点D重合,则所得到的图形形状是()A.梯形B.平行四边形C.矩形D.等边三角形6.如图将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=()文档来源:弘毅教育园丁网数学第一站.1B.C.D.27.如图,EF是△ABC的中位线,AD是中线,将△AEF沿AD方向平移到△A1E1F1的位置,使E1、F1落在BC边上,此时点A1恰好落在EF上,已知△AEF的面积是7,则阴影部分的面积是()A.7B.14C.21D.288如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若四边形ABED的面积等于8,则平移距离等于()A.2B.4C.8D.16二.填空题(共8小题)9.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于_________.10.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为_________.11.如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A落在A1(0,﹣1),点B落在点B1,则点B1的坐标为_________.文档来源:弘毅教育园丁网数学第一站.如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为_________.13在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是_________.14如图,矩形ABCD中,AB=3cm,BC=4cm.沿对角线AC剪开,将△ABC向右平移至△A1BC1位置,成图(2)的形状,若重叠部分的面积为3cm2,则平移的距离AA1=_________cm.15.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_________.16.如图,已知A(﹣3,1),B(﹣1,﹣1),C(﹣2,0),曲线ACB是以C为对称中心的中心对称图形,把此曲线沿x轴正方向平移,当点C运动到C′(2,0)时,曲线ACB描过的面积为_________.三.解答题(共7小题)文档来源:弘毅教育园丁网数学第一站.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为_________;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为_________.18.如图,△ABC中,AB=BC,将△ABC沿直线BC平移到△DCE(使B与C重合),连接BD,求∠BDE的度数.19.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.20.如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a个单位到△DEF的位置.(1)当a=4时,求△ABC所扫过的面积;(2)连接AE、AD,设AB=5,当△ADE是以DE为一腰的等腰三角形时,求a的值.21.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.文档来源:弘毅教育园丁网数学第一站.如图,在三角形ABC中,AC=BC,若将△ABC沿BC方向向右平移BC长的距离,得到△CEF,连接AE.(1)试猜想,AE与CF有何位置上的关系?并对你的猜想给予证明;(2)若BC=10,tan∠ACB=时,求AB的长.23如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.文档来源:弘毅教育园丁网数学第一站图形的变化——图形的平移1参考答案与试题解析一.选择题(共8小题)1.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cmB.18cmC.20cmD.22cm考点:平移的性质.专题:几何图形问题.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.解答:解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=CF=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选:C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.2.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直考点:平移的性质;勾股定理.专题:网格型.分析:先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.解答:解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.∵A′O=OB=,AO=OC=2,∴线段A′B与线段AC互相平分,又∵∠AOA′=45°+45°=90°,∴A′B⊥AC,∴线段A′B与线段AC互相垂直平分.故选:D.文档来源:弘毅教育园丁网数学第一站点评:本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.3.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B(2,9)C(5,3)D.(﹣9,﹣4)考点:坐标与图形变化-平移.专题:常规题型.分析:根据点A、C的坐标确定出平移规律,再求出点D的坐标即可.解答:解:∵点A(﹣1,4)的对应点为C(4,7),∴平移规律为向右5个单位,向上3个单位,∵点B(﹣4,﹣1),∴点D的坐标为(1,2).故选:A.点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12B.16C.20D.24考点:平移的性质;等边三角形的性质.专题:数形结合.分析:根据平移的性质易得AD=BE=2,那么四边形ABFD的周长即可求得.解答:解:∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴AD=BE=2,各等边三角形的边长均为4.∴四边形ABFD的周长=AD+AB+BE+FE+DF=16.故选B.点评:本题考查平移的性质,用到的知识点为:平移前后对应线段相等;关键是找到所求四边形的各边长.5.如图,已知∠EFD=∠BCA,BC=EF,AF=DC.若将△ABC沿AD向右平移,使点C与点D重合,则所得到的图形形状是()文档来源:弘毅教育园丁网数学第一站.梯形B.平行四边形C矩形D.等边三角形考点:平移的性质;平行四边形的判定.分析:首先根据平移后点C与点D重合,AF=DC,得到点A和点F重合,然后根据∠EFD=∠BCA,得到BC∥EF,从而判定所得到的图形形状是平行四边形.解答:解:∵平移后点C与点D重合,AF=DC,∴点A和点F重合,∵∠EFD=∠BCA,∴BC∥EF,∵BC=EF,∴所得到的图形形状是平行四边形,故选B.点评:本题考查了平移的性质及平行四边形的判定,解题的关键是了解平行四边形的判定定理,难度不大.6.如图将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=()A.1B.C.D.2考点:平移的性质;等腰直角三角形.分析:重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解答:解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故选:B.点评:本题考查了等腰直角三角形的性质,平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质求斜边长.7.如图,EF是△ABC的中位线,AD是中线,将△AEF沿AD方向平移到△A1E1F1的位置,使E1、F1落在BC边上,此时点A1恰好落在EF上,已知△AEF的面积是7,则阴影部分的面积是()文档来源:弘毅教育园丁网数学第一站.7B14C.21D.28考点:平移的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可知S△ABC=4S△AEF,再根据平移变换只改变图形的位置不改变图形的形状可知S△A1E1F1=S△AEF,然后列式计算即可得解.解答:解:∵EF是△ABC的中位线,∴S△ABC=4S△AEF=4×7=28,∵△AEF沿AD方向平移到△A1E1F1,∴S△A1E1F1=S△AEF=7,∴阴影部分的面积=28﹣7﹣7=14.故选B.点评:本题考查了平移的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键,难点在于理解三角形的中位线把三角形分成的小三角形的面积等于原三角形的面积的.8如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若四边形ABED的面积等于8,则平移距离等于()A.2B4C.8D.16考点:平移的性质.分析:根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.解答:解:∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,∴平移距离=8÷4=2.故选A.点评:本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功