2015届高三一模(文科)数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•沈阳一模)若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合(∁UM)∩N等于()A.{2,3}B.{2,3,5,6}C.{1,4}D.{1,4,5,6}【考点】:交、并、补集的混合运算.【专题】:集合.【分析】:根据集合的基本运算即可得到结论.【解析】:解:由补集的定义可得∁UN={2,3,5},则(∁UN)∩M={2,3},故选:A【点评】:本题主要考查集合的基本运算,比较基础.2.(5分)(2015•沈阳一模)设复数z满足(1﹣i)z=2i,则z=()A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i【考点】:复数代数形式的乘除运算.【专题】:计算题.【分析】:根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解析】:解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.【点评】:本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.(5分)(2014•安徽)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】:充要条件.【专题】:计算题;简易逻辑.【分析】:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解析】:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.【点评】:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.4.(5分)(2015•沈阳一模)抛物线y=4ax2(a≠0)的焦点坐标是()A.(0,a)B.(a,0)C.(0,)D.(,0)【考点】:抛物线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:先将抛物线的方程化为标准式,再求出抛物线的焦点坐标.【解析】:解:由题意知,y=4ax2(a≠0),则x2=,所以抛物线y=4ax2(a≠0)的焦点坐标是(0,),故选:C.【点评】:本题考查抛物线的标准方程、焦点坐标,属于基础题.5.(5分)(2015•沈阳一模)设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sn+2﹣Sn=36,则n=()A.5B.6C.7D.8【考点】:等差数列的性质.【专题】:等差数列与等比数列.【分析】:由Sn+2﹣Sn=36,得an+1+an+2=36,代入等差数列的通项公式求解n.【解析】:解:由Sn+2﹣Sn=36,得:an+1+an+2=36,即a1+nd+a1+(n+1)d=36,又a1=1,d=2,∴2+2n+2(n+1)=36.解得:n=8.故选:D.【点评】:本题考查了等差数列的性质,考查了等差数列的通项公式,是基础题.6.(5分)(2015•沈阳一模)已知某几何体的三视图如,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.B.C.2cm3D.4cm3【考点】:棱柱、棱锥、棱台的体积.【专题】:空间位置关系与距离.【分析】:由题目给出的几何体的三视图,还原得到原几何体,然后直接利用三棱锥的体积公式求解.【解析】:解:由三视图可知,该几何体为底面是正方形,且边长为2cm,高为2cm的四棱锥,如图,故,故选B.【点评】:本题考查了棱锥的体积,考查了空间几何体的三视图,能够由三视图还原得到原几何体是解答该题的关键,是基础题.7.(5分)(2015•沈阳一模)已知x,y满足约束条件,则z=2x+y的最大值为()A.3B.﹣3C.1D.【考点】:简单线性规划.【专题】:计算题.【分析】:先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解析】:解:作图易知可行域为一个三角形,当直线z=2x+y过点A(2,﹣1)时,z最大是3,故选A.【点评】:本小题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.8.(5分)(2015•沈阳一模)执行如图所示的程序框图,则输出的k的值为()A.4B.5C.6D.7【考点】:程序框图.【专题】:计算题;规律型;算法和程序框图.【分析】:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出输出不满足条件S=0+1+2+8+…<100时,k+1的值.【解析】:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出不满足条件S=0+1+2+8+…<100时,k+1的值.第一次运行:满足条件,s=1,k=1;第二次运行:满足条件,s=3,k=2;第三次运行:满足条件,s=11<100,k=3;满足判断框的条件,继续运行,第四次运行:s=1+2+8+211>100,k=4,不满足判断框的条件,退出循环.故最后输出k的值为4.故选:A.【点评】:本题考查根据流程图(或伪代码)输出程序的运行结果.这是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2015•沈阳一模)已知函数,若,则f(﹣a)=()A.B.C.D.【考点】:函数的值.【专题】:计算题.【分析】:利用f(x)=1+,f(x)+f(﹣x)=2即可求得答案.【解析】:解:∵f(x)==1+,∴f(﹣x)=1﹣,∴f(x)+f(﹣x)=2;∵f(a)=,∴f(﹣a)=2﹣f(a)=2﹣=.故选C.【点评】:本题考查函数的值,求得f(x)+f(﹣x)=2是关键,属于中档题.彩云旅行网-酒店客栈、景点门票、餐饮美食、农家乐、当地特产、旅游目的地,旅游度假,旅游线路,跟团游、游记攻略、旅游资讯、促销信息、旅游目的地、旅行生活、彩云、乡村旅游、周末休闲、周末去哪、交友分享、游记攻略、约伴旅游、拼车一站式快乐旅行,七彩生活10.(5分)(2015•沈阳一模)在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A.B.C.D.【考点】:平面向量数量积的运算.【专题】:计算题;平面向量及应用.【分析】:运用向量的平方即为模的平方,可得=0,再由向量的三角形法则,以及向量共线的知识,化简即可得到所求.【解析】:解:若|+|=|﹣|,则=,即有=0,E,F为BC边的三等分点,则=(+)•(+)=()•()=(+)•(+)=++=×(1+4)+0=.故选B.【点评】:本题考查平面向量的数量积的定义和性质,考查向量的平方即为模的平方,考查向量共线的定理,考查运算能力,属于中档题.11.(5分)(2015•沈阳一模)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.2B.4C.6D.8【考点】:奇偶函数图象的对称性;三角函数的周期性及其求法;正弦函数的图象.【专题】:压轴题;数形结合.【分析】:的图象由奇函数的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.【解析】:解:函数,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在和上是减函数;在和上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:xA+xH=xB+xG═xC+xF=xD+xE=2,故所求的横坐标之和为8故选D【点评】:发现两个图象公共的对称中心是解决本题的入口,讨论函数y2=2sinπx的单调性找出区间(1,4)上的交点个数是本题的难点所在.12.(5分)(2015•广西校级一模)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)【考点】:利用导数研究函数的单调性;导数的运算.【专题】:导数的综合应用.【分析】:构造函数g(x)=exf(x)﹣ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解析】:解:设g(x)=exf(x)﹣ex,(x∈R),则g′(x)=exf(x)+exf′(x)﹣ex=ex[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵exf(x)>ex+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.【点评】:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题纸上.)13.(5分)(2015•沈阳一模)若双曲线E的标准方程是,则双曲线E的渐进线的方程是y=x.【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:求出双曲线的a,b,再由渐近线方程y=x,即可得到所求方程.【解析】:解:双曲线E的标准方程是,则a=2,b=1,即有渐近线方程为y=x,即为y=x.故答案为:y=x.【点评】:本题考查双曲线的方程和性质:渐近线方程,考查运算能力,属于基础题.14.(5分)(2015•沈阳一模)已知{an}是等比数列,,则a1a2+a2a3+…+anan+1=.【考点】:数列的求和;等比数列的通项公式.【专题】:计算题.【分析】:首先根据a2和a5求出公比q,根据数列{anan+1}每项的特点发现仍是等比数列,根据等比数列求和公式可得出答案.【解析】:解:由,解得.数列{anan+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故答案为.【点评】:本题主要考查等比数列通项的性质和求和公式的应用.应善于从题设条件中发现规律,充分挖掘有效信息.15.(5分)(2015•沈阳一模)若直线l:(a>0,b>0)经过点(1,2)则直线l在x轴和y轴的截距之和的最小值是3+2.【考点】:直线的截距式方程.【专题】:直线与圆.【分析】:把点(1,1)代入直线方程,得到=1,然后利用a+b=(a+b)(),展开后利用基本不等式求最值.【解析】:解:∵直线l:(a>0,b>0)经过点(1,2)∴=1,∴a+b=(a+b)()=3+≥3+2,当且仅当b=a时上式等号成立.∴直线在x轴,y轴上的截距之和的最小值为3+2.故答案为:3+2.【点评】:本题考查了直线的截距式方程,考查利用基本不等式求最值,是中档题.16.(5分)(2015•沈阳一模)在直三棱柱ABC﹣A1B1C1中,若BC⊥AC,∠A=,AC=4,AA1=4,M为AA1的中点,点P为BM中点,Q在线段CA1上,且A1Q=3QC.则异面直线PQ与AC所成角的正弦值.【考点】:异面直线及其所成的角.【专题】:空间角.【分析】:以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出异面直线PQ与AC所成角的正弦值.【解析】:解:以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,则由题