教学资源网世纪金榜圆您梦想页(共3页)山东世纪金榜科教文化股份有限公司解答规范专练(六)概率与统计1.(2014·武昌模拟)某市准备从7名报名者(其中男4人,女3人)中选3人参加三个副局长职务竞选.(1)设所选3人中女副局长人数为X,求X的分布列;(2)若选派三个副局长依次到A,B,C三个局上任,求A局是男副局长的情况下,B局为女副局长的概率.2.某单位举行一次全体职工的象棋比赛(实行三局两胜制),甲、乙两人进入决赛.已知甲、乙两人平时进行过多次对弈,其中记录了30局的对弈结果如右表:根据表中的信息,预测在下列条件下的比赛结果:(1)在比赛时由掷硬币的方式决定谁先,试求甲在第一局获胜的概率;(2)若第一局由乙先,以后每局由负者先.①求甲以二比一获胜的概率;②若胜一局得2分,负一局得0分,用ξ表示甲在这场比赛中所得的分数,试求ξ的分布列与数学期望E(ξ).3.(2013·成都模拟)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下:试根据图表中的信息解答下列问题:(1)求全班的学生人数及分数在[70,80)之间的频数;(2)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80),[80,90)和[90,100]分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中成绩位于[70,80)分数段的人数X的分布列和数学期望.甲先乙先甲胜109乙胜56教学资源网世纪金榜圆您梦想页(共3页)山东世纪金榜科教文化股份有限公司答案1.解:(1)依题意,X可取0,1,2,3,P(X=0)=C34C37=435,P(X=1)=C13C24C37=1835,P(X=2)=C23C14C37=1235,P(X=3)=C33C37=135,故X的分布列为X0123P43518351235135(2)记D=“A局是男副局长”,E=“B局是女副局长”,则P(E|D)=3×56×5=12.2.解:根据题中表格的信息可知,若甲先,则甲获胜的概率是23,乙获胜的概率是13;若乙先,则甲获胜的概率是35,乙获胜的概率是25.(1)甲在第一局获胜的概率是P1=12×23+12×35=1930.(2)①若甲以二比一获胜,则甲胜第一局和第三局,或甲胜第二局和第三局.所以,甲以二比一获胜的概率是P2=35×25×23+25×23×35=825.②由题意知,ξ的所有可能取值为0,2,4,则P(ξ=0)=25×13=215;P(ξ=2)=35×25×13+25×23×25=1475;P(ξ=4)=35×35+825=1725.所以ξ的分布列为ξ024P21514751725E(ξ)=0×215+2×1475+4×1725=23275.3.解:(1)由茎叶图可知,分数在[50,60)上的频数为4,频率为0.008×10=0.08,故全班的学生人数为40.08=50.分数在[70,80)之间的频数等于50-(4+14+8+4)=20.(2)按分层抽样原理,三个分数段抽样数之比等于相应人数之比.教学资源网世纪金榜圆您梦想页(共3页)山东世纪金榜科教文化股份有限公司又[70,80),[80,90)和[90,100]分数段人数之比等于5∶2∶1,由此可得抽出的样本中分数在[70,80)之间的有5人,分数在[80,90)之间的有2人,分数在[90,100]之间的有1人.从中任取3人,共有C38=56种不同的结果.被抽中的成绩位于[70,80)分数段的学生人数X的所有取值为0,1,2,3.它们的概率分别是:P(X=0)=C3356=156,P(X=1)=C15C2356=1556,P(X=2)=C25C1356=3056=1528,P(X=3)=C3556=1056=528.∴X的分布列为X0123P15615561528528∴X的数学期望为E(X)=0×156+1×1556+2×1528+3×528=10556=158.