12015年中考数学《等腰三角形的存在性问题》复习训练题1.如图,在平面直角坐标系xOy中,已知点D在坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标2.如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时则停止运动.在P、Q两点移动过程中,当△PQC为等腰三角形时,求t的值.3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一个动点,直线PQ与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标.4、如图,已知△ABC中,AB=AC=6,BC=8,点D是BC边上的一个动点,点E在AC边上,∠ADE=∠B.设BD的长为x,CE的长为y.(1)当D为BC的中点时,求CE的长;(2)求y关于x的函数关系式,并写出x的取值范围;(3)如果△ADE为等腰三角形,求x的值.2备用图备用图5、如图,在△ABC中,AB=AC=10,BC=16,DE=4.动线段DE(端点D从点B开始)沿BC以每秒1个单位长度的速度向点C运动,当端点E到达点C时运动停止.过点E作EF//AC交AB于点F(当点E与点C重合时,EF与CA重合),联结DF,设运动的时间为t秒(t≥0).(1)直接写出用含t的代数式表示线段BE、EF的长;(2)在这个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积.6、如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=32,直线y=323x经过点C,交y轴于点G.(1)点C、D的坐标分别是C(),D();(2)求顶点在直线y=323x上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=323x平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.