1高考进行时一轮总复习新课标通用A版数学(文)开卷速查规范特训课时作业实效精炼开卷速查(34)数列求和一、选择题1.已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列{1an}的前5项和为()A.158或5B.3116或5C.3116D.158解析:设数列{an}的公比为q.由题意可知q≠1,且91-q31-q=1-q61-q,解得q=2,所以数列{1an}是以1为首项,12为公比的等比数列,由求和公式可得S5=3116.答案:C2.已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于()A.16B.8C.4D.不确定解析:由数列{an}的前n项和Sn=an2+bn(a、b∈R),可知数列{an}是等差数列,由S25=a1+a25×252=100,解得a1+a25=8,所以a1+a25=a12+a14=8.答案:B2高考进行时一轮总复习新课标通用A版数学(文)3.数列112,314,518,7116,…,(2n-1)+12n,…的前n项和Sn的值等于()A.n2+1-12nB.2n2-n+1-12nC.n2+1-12n-1D.n2-n+1-12n解析:该数列的通项公式为an=(2n-1)+12n,则Sn=[1+3+5+…+(2n-1)]+12+122+…+12n=n2+1-12n.答案:A4.若数列{an}为等比数列,且a1=1,q=2,则Tn=1a1a2+1a2a3+…+1anan+1的结果可化为()A.1-14nB.1-12nC.231-14nD.231-12n解析:an=2n-1,设bn=1anan+1=122n-1,则Tn=b1+b2+…+bn=12+123+…+122n-1=121-14n1-14=231-14n.答案:C5.已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{1anan+1}的前100项和为()3高考进行时一轮总复习新课标通用A版数学(文)A.100101B.99101C.99100D.101100解析:设等差数列{an}的首项为a1,公差为d.∵a5=5,S5=15,∴a1+4d=5,5a1+5×5-12d=15,∴a1=1,d=1,∴an=a1+(n-1)d=n.∴1anan+1=1nn+1=1n-1n+1,∴数列{1anan+1}的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.答案:A6.若数列{an}的通项为an=4n-1,bn=a1+a2+…+ann,n∈N*,则数列{bn}的前n项和是()A.n2B.n(n+1)C.n(n+2)D.n(2n+1)解析:a1+a2+…+an=(4×1-1)+(4×2-1)+…+(4n-1)=4(1+2+…+n)-n=2n(n+1)-n=2n2+n,∴bn=2n+1,b1+b2+…+bn=(2×1+1)+(2×2+1)+…+(2n+1)=n2+2n=n(n+2).答案:C7.若Sn=1-2+3-4+…+(-1)n-1·n,则S17+S33+S50等于()A.1B.-1C.0D.24高考进行时一轮总复习新课标通用A版数学(文)解析:Sn=n+12n为奇数,-n2n为偶数.故S17=9,S33=17,S50=-25,S17+S33+S50=1.答案:A8.数列{an}的通项公式an=1n+n+2(n∈N*),若前n项和为Sn,则Sn为()A.n+2-1B.n+2+n+1-2-1C.12(n+2-1)D.12(n+2+n+1-2-1)解析:∵an=1n+n+2=12(n+2-n),∴Sn=12(3-1+4-2+5-3+6-4+…+n-n-2+n+1-n-1+n+2-n)=12(-1-2+n+1+n+2)=12(n+2+n+1-2-1).答案:D9.(2014·河南郑州预测)已知数列{an}的通项公式为an=1n+1n+nn+1(n∈N*),其前n项和为Sn,则在数列S1、S2、…、S2014中,有理数项的项数为()A.42B.43C.44D.455高考进行时一轮总复习新课标通用A版数学(文)解析:1an=(n+1)n+nn+1=n+1n(n+1+n)=n+1n1n+1-n,an=n+1-nn+1n=1n-1n+1,Sn=a1+a2+a3+…+an=1-12+12-13+…+1n-1n+1=1-1n+1问题等价于在2,3,4,…,2015中有多少个数可以开方设2≤x2≤2015且x∈N,因为442=1936,452=2025,所以2≤x≤44且x∈N,共有43个.选B.答案:B10.已知函数f(n)=n2当n为奇数时,-n2当n为偶数时,且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10200解析:由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.答案:B二、填空题11.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=19,a5+b3=9,则数列{anbn}的前n项和Sn=__________.6高考进行时一轮总复习新课标通用A版数学(文)解析:由条件易求出an=n,bn=2n-1(n∈N*).∴Sn=1×1+2×21+3×22+…+n×2n-1,①2Sn=1×2+2×22+…+(n-1)×2n-1+n×2n.②由①-②,得-Sn=1+21+22+…+2n-1-n×2n,∴Sn=(n-1)·2n+1.答案:(n-1)·2n+112.在数列{an}中,an=1n+1+2n+1+…+nn+1,又bn=2anan+1,则数列{bn}的前n项和为__________.解析:∵an=nn+12n+1=n2,∴bn=8nn+1=81n-1n+1.∴b1+b2+…+bn=81-12+12-13+…+1n-1n+1=8nn+1.答案:8nn+113.若数列{an}是正项数列,且a1+a2+…+an=n2+3n(n∈N*),则a12+a23+…+ann+1=__________.解析:令n=1,得a1=4,∴a1=16.当n≥2时,a1+a2+…+an-1=(n-1)2+3(n-1).与已知式相减,得an=(n2+3n)-(n-1)2-3(n-1)=2n+2.∴an=4(n+1)2.∴n=1时,a1适合an.7高考进行时一轮总复习新课标通用A版数学(文)∴an=4(n+1)2.∴ann+1=4n+4,∴a12+a23+…+ann+1=n8+4n+42=2n2+6n.答案:2n2+6n14.若数列{an}满足a1=2且an+an-1=2n+2n-1,Sn为数列{an}的前n项和,则log2(S2012+2)=________.解析:因为a1+a2=22+2,a3+a4=24+23,a5+a6=26+25,….所以S2012=a1+a2+a3+a4+…+a2011+a2012=21+22+23+24+…+22011+22012=21-220121-2=22013-2.故log2(S2012+2)=log222013=2013.答案:2013三、解答题15.在等比数列{an}中,a2a3=32,a5=32.(1)求数列{an}的通项公式;(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn.解析:(1)设等比数列{an}的公比为q,依题意得a1q·a1q2=32,a1q4=32,解得a1=2,q=2,故an=2·2n-1=2n.(2)∵Sn表示数列{an}的前n项和,∴Sn=21-2n1-2=2(2n-1),∴S1+2S2+…+nSn=2[(2+2·22+…+n·2n)-(1+2+…+n)]=2(2+8高考进行时一轮总复习新课标通用A版数学(文)2·22+…+n·2n)-n(n+1),设Tn=2+2·22+…+n·2n,①则2Tn=22+2·23+…+n·2n+1,②①-②,得-Tn=2+22+…+2n-n·2n+1=21-2n1-2-n·2n+1=(1-n)2n+1-2,∴Tn=(n-1)2n+1+2,∴S1+2S2+…+nSn=2[(n-1)2n+1+2]-n(n+1)=(n-1)2n+2+4-n(n+1).答案:(1)an=2n;(2)(n-1)2n+2+4-n(n+1).16.[2014·石家庄质检一]已知公差不为0的等差数列{an}的前n项和为Sn,S3=a4+6,且a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)设bn=2an+1,求数列{bn}的前n项和.解析:(1)设等差数列{an}的公差为d≠0.∵S3=a4+6,∴3a1+3×2d2=a1+3d+6,解得a1=3.∵a1,a4,a13成等比数列,∴a1(a1+12d)=(a1+3d)2,解得d=2.∴an=3+2(n-1)=2n+1.∴数列{an}的通项公式为an=2n+1(n∈N*).(2)由题意,得bn=22n+1+1,数列{bn}的前n项和为Tn,则Tn=(23+25+27+…+22n+1)+n=231-22n1-22+n=22n+3-83+n9高考进行时一轮总复习新课标通用A版数学(文)答案:(1)an=2n+1(n∈N*);(2)22n+3-83+n.创新试题教师备选教学积累资源共享教师用书独具1.若数列{an}的通项公式为an=(-1)n(3n-2),则a1+a2+…+a10=()A.15B.12C.-12D.-15解析:a1+a2+…+a10=-1+4-7+10-…+(-1)10·28=(-1+4)+(-7+10)+…+(-25+28)=15.答案:A2.数列an=1nn+1,其前n项之和为910,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为()A.-10B.-9C.10D.9解析:数列的前n项和为11×2+12×3+…+1nn+1=1-1n+1=nn+1=910,∴n=9,∴直线方程为10x+y+9=0.令x=0,得y=-9,∴在y轴上的截距为-9.答案:B3.已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2013项之和S2013等于()A.1B.2010C.4018D.010高考进行时一轮总复习新课标通用A版数学(文)解析:由已知得an=an-1+an+1(n≥2),∴an+1=an-an-1.故数列的前8项依次为2008,2009,1,-2008,-2009,-1,2008,2009.由此可知数列为周期数列,周期为6,且S6=0.∵2013=6×335+3,∴S2013=S3=4018.答案:C4.[2012·课标全国]数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为________.解析:利用数列的递推式的意义结合等差数列求和公式求解.∵an+1+(-1)nan=2n-1,∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1,a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12=23-a1,…,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1,∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a57+a58+a59+a60)=10+26+42+…+234=15×10+2342=18