高一年级数学学科导学案必修三第二章统计2.1.1简单随机抽样时间:第12周第1页(共18页)第2页(共18页)主动自信合作探究发展自己成就未来关注交通安全,遵守交通规则,乘坐正规车辆.姓名:班级:小组:小组评价:教师评价:第二章统计§2.1随机抽样§2.1.1简单随机抽样第1课时上课时间:【学习目标】1.理解简单随机抽样的概念、特点和步骤.2.掌握常见的两种简单随机抽样的方法.【重点难点】【学习重点】真确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤【学习难点】能灵活应用相关知识从总体中抽取样本.一、知识链接1.读课本第55页《一个著名的案例》,你认为预测结果出错的原因是什么?由此可以总结出什么教训?2.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?二、独立预习阅读课本53~57页内容,完成57页练习题1.一般地,我们把所考察的对象的全体叫___________,组成总体的每一个研究对象叫________,从总体中抽取的一部分个体叫________,样本中个体的数目叫__________.2.简单随机抽样的定义:设一个总体含有N个个体,从中______________地抽取n个个体作为样本(__________),如果每次抽取时总体内的______________________________,这种抽样方法叫简单随机抽样.说明:简单随机抽样的特点:(1)被抽取样本的总体中的个体数N是______的;(“有限”或“无限”)(2)抽取的样本个体数n___________总体的个体数N;(3)抽取的样本是从总体中逐个抽取的;(4)简单随机抽样是一种________抽样;(“放回”或“不放回”)(5)总体中每个个体被抽到的可能性_______;(6)每个个体被抽到的可能性均为nN.3.最常用的简单随机抽样的方法有___________法、____________法.三、合作交流例1:某车间工人加工一种零件共100件,为了了解这种零件的质量,要从中抽取10件零件在同一条件下测量,如何采用抽签法获取样本?例2:我们要考察某公司生产的一批牛奶的质量是否达标,现从1000袋牛奶中抽取100袋进行检验,如何利用随机数表法获取样本?小结抽签法和随机数表法对个体的编号是不同的,抽签法可以利用个体已有的编号,如学生的学籍号,产品的记数编号等,也可以重新编号,例如总体个数为100,编号可以为1,2,3,…,100.随机数表法对个体的编号要看总体的个数,总体数为100,通常为00,01,…,99.总体数大于100小于1000,从000开始编起,然后是001,002,….四、探究展示例3:下列抽样的方式属于简单随机抽样的有____________(填写序号).(1)从无限多个个体中抽取50个个体作为样本.(2)从1000个个体中一次性抽取50个个体作为样本.(3)将1000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.变式:下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观报告会结束以后听取观众的意见,要留下32名观众进行座谈B.从十台冰箱中抽取3台进行质量检验C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本高一年级数学学科导学案必修三第二章统计2.1.1简单随机抽样时间:第12周第3页(共18页)第4页(共18页)主动自信合作探究发展自己成就未来关注交通安全,遵守交通规则,乘坐正规车辆.D.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量五、反馈总结1.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量2.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为﹙﹚A.150B.200C.100D.1203.对于简单随机抽样,有以下几种说法,其中不正确的是()A.要求总体的个数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与抽取先后有关4.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号②获取样本号码③选定开始的数字,这些步骤的先后顺序应为()A.①②③B.①③②C.③②①D.③①②5.关于简单随机抽样,下列说法不正确的是()A.当总体中个体数不多时,可以采用简单随机抽样B.采用简单随机抽样不会产生任何代表性差的样本C.用随机数表法抽取样本时,读数的方向可以向右,也可以向左、向下、向上等等D.抽鉴法抽取样本对每个个体说都是公平的6.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.(二)小结1.简单随机抽样是一种简单、基本、不放回的抽样方法,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量大时,费时、费力,并且标号的签不易搅拌均匀,这样会导致抽样不公平;随机数法的优点也是简单易行,缺点是当总体容量大时,编号不方便.两种方法只适合总体容量较少的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为n/N,但要将每个个体入样的可能性与第n次抽取时每个个体入样的可能性区分开,避免在解题中出现错误.六、课后反思姓名:班级:小组:小组评价:教师评价:§2.1.2系统抽样第1课时上课时间:【学习目标】1.理解和掌握系统抽样.2.会用系统抽样从总体中抽取样本.3.正确理解系统抽样与简单随机抽样的区别及使用范围.【重点难点】重点:实施系统抽样的步骤.难点:当Nn不是整数,如何实施系统抽样.一、知识链接问题1:什么是简单随机抽样?问题2:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?二、独立预习阅读课本58~60页内容,完成59页练习题1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本,步骤为:(1)先将总体的N个个体.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行.当Nn(n是样本容量)是整数时,取k=;(3)在第1段用抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l得到第2个个体编号,再加得到第3个个体编号,依次进行下去,直到获取整个样本.说明:系统抽样的特点:(1)当总体总量________时,常采用系统抽样;(2)将总体分成的各个部分必须是_______的,间隔是______的;(3)规则是________制订的;(4)第一部分的抽样采用__________抽样;(5)总体中每个个体被抽到的可能性_______.高一年级数学学科导学案必修三第二章统计2.1.1简单随机抽样时间:第12周第5页(共18页)第6页(共18页)主动自信合作探究发展自己成就未来关注交通安全,遵守交通规则,乘坐正规车辆.三、合作交流例1:某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。变式:现从全班63人中,用系统抽样方法任选10人进行高中生体重与身高的关系的调查.应如何实施?四、探究展示1、从已编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,322、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()A.40B.30C.20D.123、从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为()A.99B、99.5C.100D、100.5五、反馈总结达标检测1.从学号为0—50的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学号不可能是()A.1,2,3,4,5B.5,15,25,35,45C.2,12,22,32,42D.9,19,29,39,492.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体入样的可能性为()A.1083B.18C.183D.不相等3.一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是().A.分层抽样B.抽签法C.随机数表法D.系统抽样法4.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,145.某工厂生产的产品用传送带将其送入包装车间之前,质检员每隔5分钟从传送带某一位置取一件产品检测,则这种抽样方法是_____________.6.若总体中含有1650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除__________个个体,编号后应均分为________段,每段有________个个体.7.某单位的在岗工人为624人,为了调查工作上班时从家到单位的路上平均所用的时间,决定抽取10%的工人调查这一情况,如何采用系统抽样的方法完成这一抽样?小结系统抽样的优点是简单易操作,当总体个数较多的时候也能保证样本的代表性;缺点是对存在明显周期性的总体,选出来的个体,往往不具备代表性.从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.六、课后反思高一年级数学学科导学案必修三第二章统计2.1.1简单随机抽样时间:第12周第7页(共18页)第8页(共18页)主动自信合作探究发展自己成就未来关注交通安全,遵守交通规则,乘坐正规车辆.姓名:班级:小组:小组评价:教师评价:§2.1.3分层抽样第1课时上课时间:【学习目标】1.正确理解分层抽样的概念;2.掌握分层抽样的一般步骤;3.区分简单随机抽样、系统抽样和分层抽样,并选择适当的方法进行抽样.【重点难点】重点:分层抽样的概念及其步骤.难点:确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法.一、知识链接假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本,能使样本更具有代表性?二、独立预习阅读课本60~62页内容,完成62页练习1.分层抽样的概念在抽样时,将总体分成的层,然后按照,从各层地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的特点:(1)适用于有____________的总体;(2)在各层中____________抽样;(3)各层中抽样采用_______________法或______________法;(4)是等可能抽样,每个个体被抽到的可能性都是___