22分子的立体构型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

所谓“分子的立体构型”指多原子构成的共价分子中的原子的空间关系问题。在O2、HCl这样的双原子分子中不存在分子的立体结构问题。O2HCl一、形形色色的分子H2OCO21、三原子分子立体结构直线形180°V形105°一、形形色色的分子2、四原子分子立体结构HCHONH3平面三角形120°三角锥形107°3、五原子分子立体结构一、形形色色的分子CH4正四面体4、其它一、形形色色的分子P4正四面体60°C2H2直线形180°同为三原子分子,CO2和H2O分子的空间结构却不同,什么原因?同为四原子分子,CH2O与NH3分子的的空间结构也不同,什么原因?二、价层互斥理论1.内容对ABn型的分子或离子,中心原子A价层电子对(包括成键σ键电子对和未成键的孤对电子对)之间由于存在排斥力,将使分子的几何构型总是采取电子对相互排斥最小的那种构型,以使彼此之间斥力最小,分子体系能量最低,最稳定。σ键电子对和孤对电子对排斥力最小二、价层互斥理论1.价层电子对(σ键电子对和未成键的孤对电子对)代表物电子式与中心原子结合的原子数σ键电子对中心原子孤对电子价层电子对数H2ONH3CO2CH4:::HOH::::HNH:H:::HCH:HHOCO::::::::2342224314404202=δ键个数+中心原子上的孤对电子对个数价层电子对数δ键电子对数=与中心原子结合的原子数中心原子上的孤电子对数=½(a-xb)a:对于原子:为中心原子的最外层电子数(对于阳离子:a为中心原子的最外层电子数减去离子的电荷数;对于阴离子:a为中心原子的最外层电子数加上离子的电荷数)x为与中心原子结合的原子数b为与中心原子结合的原子最多能接受的电子数(H为1,其他原子为“8-该原子的最外层电子数)=δ键个数+中心原子上的孤对电子对个数2、价层电子对数分子或离子中心原子axb中心原子上的孤电子对数H2OOSO2SNH4+NCO32-C615-1=404+2=60224132孤电子对的计算6212=½(a-xb)二、价层互斥理论剖析内容对ABn型的分子或离子,中心原子A价层电子对(包括成键σ键电子对和未成键的孤对电子对)之间由于存在排斥力,将使分子的几何构型总是采取电子对相互排斥最小的那种构型,以使彼此之间斥力最小,分子体系能量最低,最稳定。排斥力最小A3.价电子对的空间构型即VSEPR模型电子对数目:234VSEPR模型:二、价层互斥理论直线平面三角形正四面体分子或离子价层电子对数目σ键电子对数孤电子对数VSEPR模型及名称分子的立体构型及名称CO22CO32-3SO234.VSEPR模型应用——预测分子立体构型232001COOCOOOSOO直线形直线形平面三角形平面三角形V形平面三角形中心原子的孤对电子也要占据中心原子的空间,并与成键电子对互相排斥。推测分子的立体模型必须略去VSEPR模型中的孤电子对应用反馈化学式中心原子孤对电子数σ键电子对数VSEPR模型H2SBF3NH2-2023空间构型V形平面三角形V形22平面三角形四面体四面体ABn型分子的VSEPR模型和立体结构VSEPR模型成键电子对数孤对电子对数分子类型电子对的排布模型立体结构实例23平面三角形20AB2直线形CO230AB321AB2价层电子对数平面三角形BF3V形SO2直线形价层电子对数VSEPR模型成键电子对数孤对电子对数分子类型电子对的排布分子构型实例模型4正四面体40AB431AB322AB2正四面体CH4三角锥形NH3V形H2O1、价层电子对数:2直线型CO2分子类型:AB2CH2O2、价层电子对数:3分子类型:AB3BF3平面三角形3、价层电子对数:4CH4三角锥形H2O角形正四面体NH3AB4AB3AB2分子类型成键电子对数孤对电子对数403122正四面体NH3的空间构型的空间构型2HO中心原子上无孤对电子的分子:VSEPR模型就是其分子的立体结构。中心原子上存在孤对电子的分子:先由价层电子对数得出含有孤对电子的价层电子对互斥模型,然后略去孤对电子在价层电子对互斥模型占有的空间,剩下的就是分子的立体结构。4、价层电子对数:5PCl5SF4ClF3三角双锥变形四面体T形直线形三角双锥I3-5、价层电子对数:6八面体SF6平面正方形4ICl八面体四方锥形IF51.若ABn型分子的中心原子A上没有未用于形成共价键的孤对电子,运用价层电子对互斥模型,下列说法正确的()A.若n=2,则分子的立体构型为V形B.若n=3,则分子的立体构型为三角锥形C.若n=4,则分子的立体构型为正四面体形D.以上说法都不正确C2.用价层电子对互斥模型判断SO3的分子构型___A、正四面体形B、V形C、三角锥形D、平面三角形D思考与交流1、甲烷分子呈正四面体结构,它的四个C-H键的键长相同,键角都是109°28′,四个C-H键的性质完全相同2、根据价键理论,甲烷形成四个C-H键都应该是σ键,然而C原子最外层的四个电子分别2个在球形2S轨道、2个在相互垂直2P轨道上,用它们跟4个氢原子的1S原子轨道重叠,不可能形成四面体构型的甲烷分子如何解决上列一对矛盾?值得注意的是价层电子对互斥模型只能解释化合物分子的空间构形,却无法解释许多深层次的问题。为了解决这一矛盾,鲍林提出了杂化轨道理论三、杂化轨道理论简介----鲍林1、杂化:杂化是指在形成分子时,由于原子的相互影响,若干不同类型能量相近的原子轨道混杂起来,重新组合成一组新的原子轨道。这种重新组合的过程叫做杂化,所形成的新的轨道称为杂化轨道。2、杂化的过程:杂化轨道理论认为在形成分子时,通常存在激发、杂化和轨道重叠等过程。2s2p2s2psp3激发杂化C原子sp3杂化轨道形成过程CH4分子的形成过程:碳原子2s轨道中的一个电子吸收能量跃迁到2p轨道上,这个过程称为激发。但此时各个轨道的能量并不完全相同,于是一个2s轨道和三个2p轨道“混杂”起来,形成能量相等,成份相同的四个sp3杂化轨道,然后四个sp3杂化轨道上的电子间相互排斥,使四个sp3杂化轨道指向空间距离最远的正四面体的四个顶点,碳原子四个sp3杂化轨道分别与四个氢原子的1s轨道形成四个相同的sp3键,从而形成CH4分子。由于四个C-H键完全相同,所以形成的CH4分子为正四面体,键角为109°28′激发s2p2p2s2杂化3spsp3C:2s22p2由1个s轨道和3个p轨道混杂并重新组合成4个能量与形状完全相同的轨道。我们把这种轨道称之为sp3杂化轨道。为了四个杂化轨道在空间尽可能远离,使轨道间的排斥最小,4个杂化轨道的伸展方向成什么立体构型?四个H原子分别以4个s轨道与C原子上的四个sp3杂化轨道相互重叠后,就形成了四个性质、能量和键角都完全相同的S-SP3σ键,从而构成一个正四面体构型的分子。3.杂化轨道理论的要点(1)发生轨道杂化的原子一定是中心原子。(2)参加杂化的各原子轨道能量要相近(同一能级组或相近能级组的轨道)。(3)杂化轨道的能量、形状完全相同。(4)杂化前后原子轨道数目不变:参加杂化的轨道数目等于形成的杂化轨道数目;杂化后原子轨道方向改变,杂化轨道在成键时更有利于轨道间的重叠(5)杂化轨道在空间构型上都具有一定的对称性(以减小化学键之间的排斥力)。(6)分子的构型主要取决于原子轨道的杂化类型。4、杂化轨道的类型(1)sp杂化:sp杂化轨道是由一个ns轨道和一个np轨道组合而成的。sp杂化轨道的夹角是180°,呈直线形。例如,气态的BeCl2分子的结构。Be原子的电子层结构是1s22s2,从表面上看Be原子似乎不能形成共价键,但是在激发状态下,Be的一个2s电子进入2p轨道,经过杂化形成两个sp杂化轨道,与氯原子中的3p轨道重叠形成两个sp-pσ键。由于杂化轨道间的夹角为180°,所以形成的BeCl2分子的空间结构是直线形的。2s2p2s2psp激发杂化Be原子sp杂化轨道形成过程Be原子基态激发态杂化态sp杂化轨道的形成过程xyzxyzzxyzxyz180°每个sp杂化轨道的形状为一头大,一头小,含有1/2s轨道和1/2p轨道的成分两个轨道间的夹角为180°,呈直线型sp杂化:1个s轨道与1个p轨道进行的杂化,形成2个sp杂化轨道。sp杂化是一个s轨道和一个p轨道组合而成的,每个sp杂化轨道含有(1/2)s和(1/2)p的成分,杂化轨道间的夹角为180°,呈直线型。为什么铍原子的四个电子不单独分占四个轨道,进而形成四个杂化轨道呢?这是因为组成杂化轨道的原子轨道,要求能量相差不能太大。2s轨道和2p轨道在能量上是比较接近的,而2s、2p和1s相比能量相差较大,不易形成杂化轨道。你还能说出哪些分子的中心原子采取的是sp杂化?CO2、C2H2等,也就是当中心原子价层电子对数为2时,这个中心原子就进行了sp杂化(2)sp2杂化:sp2杂化轨道是由一个ns轨道和两个np轨道组合而成的。sp2杂化轨道的夹角是120°,呈平面三角形。例如,BF3分子的结构,B原子的电子层结构是1s22s22pX1,当硼与氟反应时,B的一个2s电子激发到一个空的2p轨道中,使B原子的电子层结构变为1s22s12pX12pY1。B原子的2s轨道和两个2p轨道杂化组合成三个sp2杂化轨道,B原子三个sp2杂化轨道分别与氟原子的各一个2p轨道重叠形成三个sp2-pσ键。由于三个sp2杂化轨道在同一平面上,而且夹角为120°,所以形成的BF3分子的空间结构是平面三角形。2s2p2s2psp2激发杂化B原子sp2杂化轨道形成过程B原子基态激发态杂化态sp2杂化轨道的形成过程xyzxyzzxyzxyz120°每个sp2杂化轨道的形状也为一头大,一头小,含有1/3s轨道和2/3p轨道的成分每两个轨道间的夹角为120°,呈平面三角形sp2杂化:1个s轨道与2个p轨道进行的杂化,形成3个sp2杂化轨道。sp2杂化是一个s轨道和两个p轨道组合而成的,每个sp2杂化轨道含有(1/3)s和(2/3)p的成分,杂化轨道间的夹角为120°,呈平面三角形。如BF3分子BFFF120°你还能说出哪些分子的中心原子采取的是sp2杂化?CH2O、C2H4、SO2等,也就是当中心原子价层电子对数为3时,这个中心原子就进行了sp2杂化(3)sp3杂化----四面体形在学习价层电子对互斥模型时我们知道,H2O和NH3的VSEPR模型跟甲烷一样,也是四面体形的,因此它们的中心原子也是采取sp3杂化的。所不同的是,水分子的氧原子的sp3杂化轨道有2个孤对电子占据的,而氨分子的氮原子的sp3杂化轨道有1个由孤对电子占据。你还能说出哪些分子的中心原子采取的是sp3杂化?NH3、H2O、CX4、H2S、CH2X2等,也就是当中心原子价层电子对数为4时,这个中心原子就进行了sp3杂化,烷烃和其它化合物分子中的饱和碳原子均为sp3杂化。sp3杂化轨道的形成过程xyzxyzzxyzxyz109°28′sp3杂化:1个s轨道与3个p轨道进行的杂化,形成4个sp3杂化轨道。每个sp3杂化轨道的形状也为一头大,一头小,含有1/4s轨道和3/4p轨道的成分每两个轨道间的夹角为109.5°,空间构型为正四面体型杂化类型spsp2sp3参与杂化的原子轨道杂化轨道数杂化轨道间夹角空间构型实例5.三种sp杂化轨道类型的比较1个s+2个p1个s+1个p1个s+3个p2个sp杂化轨道3个sp2杂化轨道4个sp3杂化轨道180°120°109°28′直线形平面三角形正四面体形BeCl2BF3CH46、几点说明(1)杂化轨道只用于形成σ键或者用来容纳未参与成键的孤对电子。(2)未参与杂化的p轨道,可用于形成π键(3)有几个原子轨道参与杂化,就形成几个杂化轨道(4)利用中心原子杂化轨道类型可直接判断分子的立体结构杂化轨道的电子云一头大,一头小,成键时利用大的一头,可以使电子云重叠程度更大,从而形成稳定的化学键。即杂化轨道增强了成键能力.H2O原子轨道杂化O原子:2s22p4有2个单电子,可形成2个共价键,键角应当是109.5°,Why?2s2p2对孤对电子杂化不等性杂化:参与杂化的各原子轨道进行成分上的

1 / 80
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功