10/21/2014选修2-22.1.2演绎推理一、选择题1.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提是()A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形[答案]B[解析]由大前提、小前提、结论三者的关系,知大前提是:矩形是对角线相等的四边形.故应选B.2.“①一个错误的推理或者前提不成立,或者推理形式不正确,②这个错误的推理不是前提不成立,③所以这个错误的推理是推理形式不正确.”上述三段论是()A.大前提错B.小前提错C.结论错D.正确的[答案]D[解析]前提正确,推理形式及结论都正确.故应选D.3.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是()A.类比推理B.归纳推理C.演绎推理D.一次三段论[答案]C[解析]这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式.4.“因对数函数y=logax(x0)是增函数(大前提),而y=log13x是对数函数(小前提),所以y=log13x是增函数(结论)”.上面推理的错误是()A.大前提错导致结论错10/21/2014B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提都错导致结论错[答案]A[解析]对数函数y=logax不是增函数,只有当a1时,才是增函数,所以大前提是错误的.5.推理:“①矩形是平行四边形,②三角形不是平行四边形,③所以三角形不是矩形”中的小前提是()A.①B.②C.③D.①②[答案]B[解析]由①②③的关系知,小前提应为“三角形不是平行四边形”.故应选B.6.三段论:“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③所以这艘船是准时起航的”中的小前提是()A.①B.②C.①②D.③[答案]B[解析]易知应为②.故应选B.7.“10是5的倍数,15是5的倍数,所以15是10的倍数”上述推理()A.大前提错B.小前提错C.推论过程错D.正确[答案]C[解析]大小前提正确,结论错误,那么推论过程错.故应选C.8.凡自然数是整数,4是自然数,所以4是整数,以上三段论推理()A.正确B.推理形式正确C.两个自然数概念不一致D.两个整数概念不一致10/21/2014[答案]A[解析]三段论的推理是正确的.故应选A.9.在三段论中,M,P,S的包含关系可表示为()[答案]A[解析]如果概念P包含了概念M,则P必包含了M中的任一概念S,这时三者的包含可表示为;如果概念P排斥了概念M,则必排斥M中的任一概念S,这时三者的关系应为.故应选A.10.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提使用错误D.使用了“三段论”,但小前提使用错误[答案]D[解析]应用了“三段论”推理,小前提与大前提不对应,小前提使用错误导致结论错误.二、填空题11.求函数y=log2x-2的定义域时,第一步推理中大前提是a有意义时,a≥0,小前提是log2x-2有意义,结论是________.[答案]log2x-2≥0[解析]由三段论方法知应为log2x-2≥0.12.以下推理过程省略的大前提为:________.10/21/2014∵a2+b2≥2ab,∴2(a2+b2)≥a2+b2+2ab.[答案]若a≥b,则a+c≥b+c[解析]由小前提和结论可知,是在小前提的两边同时加上了a2+b2,故大前提为:若a≥b,则a+c≥b+c.13.(2010·重庆理,15)已知函数f(x)满足:f(1)=14,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2010)=________.[答案]12[解析]令y=1得4f(x)·f(1)=f(x+1)+f(x-1)即f(x)=f(x+1)+f(x-1)①令x取x+1则f(x+1)=f(x+2)+f(x)②由①②得f(x)=f(x+2)+f(x)+f(x-1),即f(x-1)=-f(x+2)∴f(x)=-f(x+3),∴f(x+3)=-f(x+6)∴f(x)=f(x+6)即f(x)周期为6,∴f(2010)=f(6×335+0)=f(0)对4f(x)f(y)=f(x+y)+f(x-y),令x=1,y=0,得4f(1)f(0)=2f(1),∴f(0)=12即f(2010)=12.14.四棱锥P-ABCD中,O为CD上的动点,四边形ABCD满足条件________时,VP-AOB恒为定值(写出一个你认为正确的一个条件即可).[答案]四边形ABCD为平行四边形或矩形或正方形等[解析]设h为P到面ABCD的距离,VP-AOB=13S△AOB·h,又S△AOB=12|AB|d(d为O到直线AB的距离).10/21/2014因为h、|AB|均为定值,所以VP-AOB恒为定值时,只有d也为定值,这是一个开放型问题,答案为四边形ABCD为平行四边形或矩形或正方形等.三、解答题15.用三段论形式证明:在梯形ABCD中,AD∥BC,AB=DC,则∠B=∠C.[证明]如下图延长AB,DC交于点M.①平行线分线段成比例大前提②△AMD中AD∥BC小前提③MBBA=MCCD结论①等量代换大前提②AB=CD小前提③MB=MC结论在三角形中等边对等角大前提MB=MC小前提∠1=∠MBC=∠MCB=∠2结论等量代换大前提∠B=π-∠1∠C=π-∠2小前提∠B=∠C结论16.用三段论形式证明:f(x)=x3+x(x∈R)为奇函数.[证明]若f(-x)=-f(x),则f(x)为奇函数大前提∵f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)=-f(x)小前提∴f(x)=x3+x是奇函数结论17.用三段论写出求解下题的主要解答过程.若不等式|ax+2|<6的解集为(-1,2),求实数a的值.[解析]推理的第一个关键环节:大前提:如果不等式f(x)<0的解集为(m,n),且f(m)、f(n)有意义,则m、n是方程f(x)=0的实数根,小前提:不等式|ax+2|<6的解集为(-1,2),且x=-1与x=2都使表达式|ax+2|-6有意义,10/21/2014结论:-1和2是方程|ax+2|-6=0的根.∴|-a+2|-6=0与|2a+2|-6=0同时成立.推理的第二个关键环节:大前提:如果|x|=a,a>0,那么x=±a,小前提:|-a+2|=6且|2a+2|=6,结论:-a+2=±6且2a+2=±6.以下可得出结论a=-4.18.设A(x1,y1)、B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.[解析](1)F∈l⇔|FA|=|FB|⇔A、B两点到抛物线的准线的距离相等.∵抛物线的准线是x轴的平行线,y1≥0,y2≥0,依题意,y1,y2不同时为0.∴上述条件等价于y1=y2⇔x21=x22⇔(x1+x2)(x1-x2)=0.∵x1≠x2,∴上述条件等价于x1+x2=0,即当且仅当x1+x2=0时,l经过抛物线的焦点F.(2)设l在y轴上的截距为b,依题意得l的方程为y=2x+b;过点A、B的直线方程为y=-12x+m,所以x1,x2满足方程2x2+12x-m=0,得x1+x2=-14.A、B为抛物线上不同的两点等价于上述方程的判别式Δ=14+8m0,即m-132.设AB的中点N的坐标为(x0,y0),则x0=12(x1+x2)=-18,y0=-12x0+m=116+m.由N∈l,得116+m=-14+b,于是b=516+m516-132=932.即得l在y轴上截距的取值范围是932,+∞.10/21/2014