2014《创新设计》二轮专题复习阶段检测卷5

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

阶段检测卷(五)一、填空题(每小题5分,共70分)1.一支田径运动队有男运动员56人,女运动员42人;现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.解析设抽取的女运动员有x人,则856=x42,解得x=6.答案62.(2011·江苏卷)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2=________.解析由题意得该组数据的平均数为x=15(10+6+8+5+6)=7,所以方差为s2=15[32+(-1)2+12+(-2)2+(-1)2]=3.2.答案3.23.(2011·江苏卷)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析从中取出两个数共有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6种情况.其中一个数是另一个数的两倍的情况共有{1,2},{2,4}2种,∴p=26=13.答案134.(2010·江苏卷)盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色相同的概率是________.解析四个球取出两球有6种等可能基本事件:(黑,白1),(黑,白2),(黑,白3),(白1,白2),(白1,白3),(白2,白3).两只球颜色相同有3种:(白1,白2),(白1,白3),(白2,白3).所以所求概率为P=36=12.答案125.(2013·南通调研)已知正四棱锥的底面边长是6,高为7,这个正四棱锥的侧面积是________.解析由于四棱锥的斜高h=72+32=4,故其侧面积S=12×4×6×4=48.答案486.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________解析当x≥4时,89+89+92+93+92+91+947=6407≠91,∴x4,∴89+89+92+93+92+91+x+907=91,∴x=1.答案17.(2012·辽宁卷改编)在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为________.解析设线段AC的长为xcm,则线段CB的长为(12-x)cm,那么矩形的面积为x(12-x)cm2,由x(12-x)>20,解得2<x<10.又0<x<12,所以该矩形面积大于20cm2的概率为23.答案238.(2013·辽宁卷改编)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.解析由频率分布直方图,低于60分的频率为(0.01+0.005)×20=0.3.所以该班学生人数150.3=50.答案509.(2012·南通模拟)给出如下10个数据:63,65,67,69,66,64,66,64,65,68.根据这些数据制作频率分布直方图,其中[64.5,66.5)这组所对应的矩形的高为________.解析落在区间[64.5,66.5)的数据依次为65,66,66,65,共4个,则矩形的高等于频率组距=41066.5-64.5=15.答案1510.(2012·淮阴、海门、天一中学联考)在圆x2+y2=4所围成的区域内随机取一个点P(x,y),则|x|+|y|≤2的概率为________.解析|x|+|y|≤2表示的图形是正方形及其内部,用正方形的面积除以圆x2+y2=4的面积易得概率为2π.答案2π11.如图,正方体ABCD­A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.解析∵EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,∴EF∥AC,又∵E是AD的中点,∴F是CD的中点,即EF是△ACD的中位线,∴EF=12AC=12×22=2.答案212.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是________.解析①个位数为1,3,5,7,9时,十位数为2,4,6,8;个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个.②个位数为0时,十位数为1,3,5,7,9,共5个,个位数为0的概率是545=19.答案1913.已知P是△ABC所在平面内一点,PB→+PC→+2PA→=0,现将一粒黄豆随机撒在△ABC内,则黄豆落在△PBC内的概率是________.解析取边BC上的中点D,由PB→+PC→+2PA→=0,得PB→+PC→=2AP→,而由向量的中点公式知PB→+PC→=2PD→,则有AP→=PD→,即P为AD的中点,则S△ABC=2S△PBC,根据几何概率的概率公式知,所求的概率为12.答案1214.(2013·安徽卷改编)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93①这种抽样方法是一种分层抽样;②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差;④该班男生成绩的平均数小于该班女生成绩的平均数,则以上说法一定正确的是________.解析若抽样方法是分层抽样,男生、女生分别抽取6人、4人,所以①错;由题目看不出是系统抽样,所以②错;这五名男生成绩的平均数,x男=15(86+94+88+92+90)=90,这五名女生成绩的平均数x女=15(88+93+93+88+93)=91,故这五名男生成绩的方差为s2甲=15(42+42+22+22+02)=8,这五名女生成绩的方差为s2乙=15(32+22+22+32+22)=6.显然③正确,④错.答案③二、解答题(共90分)15.(本小题满分14分)如图,在四棱锥P­ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.(1)求证:DE∥平面PBC;(2)求证:DE⊥平面PAB.证明(1)设PB的中点为F,连接EF、CF,EF∥AB,DC∥AB,所以EF∥DC,且EF=DC=12AB.故四边形CDEF为平行四边形,可得ED∥CF.又ED⊄平面PBC,CF⊂平面PBC,故DE∥平面PBC.(2)因为PD⊥底面ABCD,AB⊂平面ABCD,所以AB⊥PD.又因为AB⊥AD,PD∩AD=D,AD⊂平面PAD,PD⊂平面PAD,所以AB⊥平面PAD.ED⊂平面PAD,故ED⊥AB.又PD=AD,E为PA的中点,故ED⊥PA;PA∩AB=A,PA⊂平面PAB,AB⊂平面PAB,所以ED⊥平面PAB.16.(本小题满分14分)(2013·南京、盐城模拟)如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.(1)求证:AB∥平面CDE;(2)求证:平面ABCD⊥平面ADE.证明(1)正方形ABCD中,AB∥CD,又AB⊄平面CDE,CD⊂平面CDE,所以AB∥平面CDE.(2)因为AE⊥平面CDE,且CD⊂平面CDE,所以AE⊥CD,又正方形ABCD中,CD⊥AD,且AE∩AD=A,AE、AD⊂平面ADE,所以CD⊥平面ADE,又CD⊂平面ABCD,所以平面ABCD⊥平面ADE.17.(本小题满分14分)(2013·苏州质检)如图,在直三棱柱ABC­A1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点,(1)求证:MN∥平面AA1C1C;(2)若AC=AA1,求证:MN⊥平面A1BC.证明(1)连接AC1,因为M为A1B与AB1的交点,所以M是AB1的中点,又N为棱B1C1的中点.所以MN∥AC1,又因为AC1⊂平面AA1C1C,MN⊄平面AA1C1C,所以MN∥平面AA1C1C.(2)因为AC=AA1,所以四边形AA1C1C是正方形,所以AC1⊥A1C,又AC1∥MN,所以A1C⊥MN.又因为ABC­A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为BC⊂平面ABC,所以CC1⊥BC.又因为∠ACB=90°,所以AC⊥BC,因为CC1∩AC=C,所以BC⊥平面AA1C1C,又AC1⊂平面AA1C1C,所以BC⊥AC1,因为MN∥AC1,所以MN⊥BC,又MN⊥A1C,又BC∩A1C=C,所以MN⊥平面A1BC.18.(本小题满分16分)如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1)求证:BD⊥平面POA;(2)记三棱锥P­ABD体积为V1,四棱锥P­BDEF体积为V2,且V1V2=43,求此时线段PO的长.(1)证明在菱形ABCD中,∵BD⊥AC,∴BD⊥AO.∵EF⊥AC,∴PO⊥EF,∵平面PEF⊥平面ABFED,平面PEF∩平面ABFED=EF,且PO⊂平面PEF.∴PO⊥平面ABFED,∵BD⊂平面ABFED,∴PO⊥BD.∵AO∩PO=O,AO,PO⊂平面POA.∴BD⊥平面POA.(2)解设AO∩BD=H由(1)知,PO⊥平面ABFED,PO=CO.∴PO是三棱锥P­ABD的高及四棱锥P­BDEF的高∴V1=13S△ABD·PO,V2=13S梯形BFED·PO∵V1V2=43∴S梯形BFED=34S△ABD=34S△BCD∴S△CEF=14S△BCD∵BD⊥AC,EF⊥AC,∴EF∥BD,∴△CEF∽△CDB∴COCH2=S△CEFS△BCD=14∴CO=12CH=12AH=12×23=3∴线段PO的长为3.19.(本小题满分16分)(2013·扬州调研)如图,在三棱柱ABC­A1B1C1中,底面△ABC是等边三角形,D为AB中点.(1)求证:BC1∥平面A1CD;(2)若四边形BCC1B1是矩形,且CD⊥DA1,求证:三棱柱ABC­A1B1C1是正三棱柱.证明(1)连接AC1,设AC1与A1C相交于点O,连接DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1∵BC1⊄平面A1CD,DO⊂平面A1CD∴BC1∥平面A1CD;(2)∵等边△ABC,D为AB的中点,∴CD⊥AB∵CD⊥DA1,DA1∩AB=D,∴CD⊥平面ABB1A1∵BB1⊂平面ABB1A1,∴BB1⊥CD,∵四边形BCC1B1是矩形,∴BB1⊥BC∵BC∩CD=C,∴BB1⊥平面ABC∵底面△ABC是等边三角形∴三棱柱ABC­A1B1C1是正三棱柱.20.(本小题满分16分)(2012·苏锡常镇调研)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.图1图2(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B­DEG的体积.(1)证明如图(1)∵CE=4,∠DCE=30°,过点D作AC的垂线交于点M,则DM=3,EM=1,∴DE=2,CD=23.则CD2+DE2=EC2,∴∠CDE=90°,DE⊥DC.在图(2)中,又∵平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE⊂平面ACD,∴DE⊥平面BCD.图(1)图(2)(2)解在图(2)中,∵EF∥平面BDG,EF⊂平面ABC,平面ABC∩平面BDG=BG,∴EF∥BG.∵点E在线段AC上,CE=4,点F是AB的中点,∴AE=EG=CG=2.作BH⊥CD交于H.∵平面BCD⊥平面ACD,∴B

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功