2014中考特殊的平行四边形复习题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

由莲山课件提供资源全部免费由莲山课件提供资源全部免费特殊的平行四边形A级基础题1.(2013年四川宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等2.(2013年四川巴中)如图4­3­35,菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则菱形ABCD的周长是()图4­3­35A.24B.16C.413D.2133.(2013年海南)如图4­3­36,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是()新课标第一网A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°图4­3­36图4­3­37图4­3­38图4­3­394.(2013年内蒙古赤峰)如图4­3­37,4×4的方格中每个小正方形的边长都是1,则S四边形ABDC与S四边形ECDF的大小关系是()A.S四边形ABDC=S四边形ECDFB.S四边形ABDCS四边形ECDFC.S四边形ABDC=S四边形ECDF+1D.S四边形ABDC=S四边形ECDF+25.(2013年四川凉山州)如图4­3­38,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.176.(2013年湖南邵阳)如图4­3­39,将△ABC绕AC的中点O按顺时针旋转180°得到△CDA,添加一个条件____________,使四边形ABCD为矩形.7.(2013年宁夏)如图4­3­40,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.图4­3­40由莲山课件提供资源全部免费由莲山课件提供资源全部免费新-课-标-第-一-网8.如图4­3­41,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.图4­3­419.(2013年辽宁铁岭)如图4­3­42,在△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.图4­3­42B级中等题10.(2013年四川南充)如图4­3­43,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12B.24C.123D.163图4­3­43图4­3­44图4­3­4511.(2013年内蒙古呼和浩特)如图4­3­44,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________..(2013年福建莆田)如图4­3­45,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________.13.(2013年山东青岛)已知:如图4­3­46,在矩形ABCD中,M,N分别是边AD,BC由莲山课件提供资源全部免费由莲山课件提供资源全部免费的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=__________时,四边形MENF是正方形(只写结论,不需证明).图4­3­46C级拔尖题14.(2013年内蒙古赤峰)如图4­3­47,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.新课标第一网图4­3­47由莲山课件提供资源全部免费由莲山课件提供资源全部免费特殊的平行四边形1.B2.C3.B4.A5.C6.∠B=90°或∠BAC+∠BCA=90°7.证明:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB.又∵AD=AE,∴△ADF≌△EAB.∴DF=AB.∴DF=DC.8.证明:由平移变换的性质,得CF=AD=10cm,DF=AC,∵∠B=90°,AB=6cm,BC=8cm,∴AC2=AB2+CB2,即AC=10cm.∴AC=DF=AD=CF=10cm.∴四边形ACFD是菱形.9.(1)证明:∵点O为AB的中点,OE=OD,∴四边形AEBD是平行四边形.∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.即∠ADB=90°.∴四边形AEBD是矩形.(2)解:当△ABC是等腰直角三角形时,矩形AEBD是正方形.∵△ABC是等腰直角三角形,∴∠BAD=∠CAD=∠DBA=45°.∴BD=AD.由(1)知四边形AEBD是矩形,XKb1.Com∴四边形AEBD是正方形.10.D11.1212.5解析:连接BP,交AC于点Q,连接QD.∵点B与点D关于AC对称,∴BP的长即为PQ+DQ的最小值,∵CB=4,DP=1.∴CP=3,在Rt△BCP中,BP=BC2+CP2=42+32=5.13.(1)证明:在矩形ABCD中,AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)2∶1解析:当AD∶AB=2∶1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD∶AB=2∶1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.14.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF.新课标第一网(2)能.理由如下:由莲山课件提供资源全部免费由莲山课件提供资源全部免费∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.当AE=AD时,四边形AEFD是菱形,即60-4t=2t.解得t=10s,∴当t=10s时,四边形AEFD为菱形.(3)①当∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=60°,∴AD=AE·cos60°=t.又AD=60-4t,即60-4t=t,解得t=12s.②当∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠A=60°,则∠ADE=30°.∴AD=2AE,即60-4t=4t,解得t=152s.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=152s或t=12s时,△DEF为直角三角形.新课标第一网系列资料

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功