第1516讲厌氧生物处理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第六章废水厌氧生物处理技术概述生物学原理工艺流程6.1废水厌氧生物处理的微生物学与生化反应原理厌氧微生物的种类专性厌氧微生物当暴露于有氧气的环境之下,有些厌氧生物会死亡。这种生物称为“专性厌氧生物”,它们是以发酵或无氧呼吸生存。在有氧的环境下,专性厌氧生物会出现缺乏超氧化物歧化酶及过氧化氢酶的情况,这些酶是可以帮助移走在专性厌氧生物细胞内的致命的超氧化物。兼性厌氧微生物兼性厌氧生物是可以在有氧的环境中,利用当中的氧气进行有氧呼吸。但当在没有氧气的环境下,它们部分会进行发酵,而部分则进行无氧呼吸。2.厌氧生物处理过程发展简史1776年,意大利物理学家Volta认为甲烷气体产生与湖泊沉积物中植物体的腐烂有关。1868年,Becbamp首次指出甲烷形成过程是一种微生物学过程。1875年,俄国学者Popoff也发现沼气发酵是由微生物所引起的。1901年,荷兰的N.L.Soehngen(DELFT)对产甲烷菌的形态特性及其转化作用提出了一个比较清楚的概念,观察到低级脂肪酸可转化为甲烷和二氧化碳,氢和二氧化碳发酵可形成甲烷。1902年,Maze获得了一种产甲烷的微球菌,后命名为马氏甲烷球菌。1916年,V.L.Omeliansky分离到1株不产芽孢、发酵乙醇产甲烷菌,后被命名为奥氏甲烷杆菌,现证实其并非一个纯菌种。1934年,VanNiel提出二氧化碳还原为甲烷的理论。1936年,Barker采用化学合成培养基培养阴沟污泥,获得了能很好的发酵乙醇、丙醇和丁醇的有机体。1950年,R.E.Hungate发明了厌氧培养技术,为厌氧微生物的分离培养转化提供了一种有效的方法,为以后对甲烷菌的研究创造了条件。厌氧生物处理——生物学原理废水厌氧生物处理是指在无分子氧条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程,也称为厌氧消化。厌氧生物处理法的处理对象是:高浓度有机工业废水(一般B005≥2000mg/L)、城镇污水的污泥、动植物残体及粪便等。图19-1产甲烷的串联代谢(McCarty和Smith,1986)乙酸CH4CO228%72%长链脂肪酸(丙酸、丁酸等)简单有机化合物(糖、氨基酸、肽)复杂有机化合物(碳水化合物、蛋白质、类脂类)13%10%5%20%35%17%水解产酸H2CO2厌氧消化的三阶段理论水解、发酵阶段:产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2;产甲烷阶段:产甲烷菌利用乙酸和H2、CO2产生CH4;一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CO2。二、厌氧消化过程中的主要微生物1、发酵细菌(产酸细菌):发酵产酸细菌的主要功能有两种:①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。2、产氢产乙酸菌产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。主要的产氢产乙酸反应有:乙醇:丙酸:丁酸:232232HCOOHCHOHOHCHCH22322332COHCOOHCHOHCOOHCHCH232223222HCOOHCHOHCOOHCHCHCH主要的产氢产乙酸细菌多为:互营单胞菌属、互营杆菌属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。3、产甲烷菌产甲烷细菌的主要功能是将产氢产乙酸菌的产物——乙酸和H2/CO2转化为CH4和CO2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有产甲烷八叠球菌和产甲烷丝状菌,但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解。典型的产甲烷反应:①②③④⑤⑥⑦⑧243COCHCOOHCHOHCHCOH242224324224HCCOCHHHCOO242324COCHOHCOOHHHCOCHOHCH234334434243343399)(4NHHHCOCHOHNHCHSHHHCOCHOHSCH234233233)(2OHCHHOHCH24234产甲烷菌有各种不同的形态,常见的有:①产甲烷杆菌;②产甲烷球菌;③产甲烷八叠球菌;④产甲烷丝菌;等等。产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达46天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤。6.2厌氧生物处理工艺的特点与影响因素废水厌氧生物处理的优点:(1)应用范围广厌氧法既适用于高浓度有机废水,又适用于中、低浓度有机废水。有些有机物对好氧生物处理法来说是难降解的,但对厌氧生物处理是可降解的、如固体有机物、着色剂蒽和某些偶氮染料等。(2)能耗低好氧法需要消耗大量能量供氧,曝气费用随着有机物浓度的增加而增大,而厌氧法不需要氧,而且产生的沼气可作为能源。(3)负荷高通常好氧法的有机容积负荷为2~4kgBOD/m3.d,而厌氧法为2~10kgCOD/m3.d,高的可达50kgCOD/m3.d。(4)剩余污泥量少,且其浓缩性、脱水性良好好氧法每去除1kgCOD将产生0.4~0.6kg生物量,而厌氧法去除1kgCOD只产生0.02~0.1kg生物量,其剩余污泥量只有好氧法的5%~20%。(5)氮、磷营养需要量较少好氧法一般要求BOD:N:P为100:5:1,而厌氧法的BOD:N:P为100:2.5:0.5,对氮、磷缺乏的工业废水所需投加的营养盐量较少。缺点:(1)厌氧微生物增殖缓慢,因而厌氧设备启动和处理时间比好氧设备长。(2)处理后的出水水质差,往往需进一步处理才能达标排放。(3)反应过程较为复杂——厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个连续的微生物过程;厌氧生物处理技术是我国水污染控制的重要手段我国高浓度有机工业废水排放量巨大,这些废水浓度高、多含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物;我国当前的水体污染物还主要是有机污染物以及营养元素N、P的污染;目前的形势是:能源昂贵、土地价格剧增、剩余污泥的处理费用也越来越高;厌氧工艺的突出优点是:①能将有机污染物转变成沼气并加以利用;②运行能耗低;③有机负荷高,占地面积少;④污泥产量少,剩余污泥处理费用低等等;影响废水厌氧生物处理的环境因素(1)温度(2)pH(3)氧化还原电位(4)营养物质与微量元素(5)有毒物质一、温度条件温度是影响微生物生命活动过程的重要因素之一。温度主要影响微生物的生化反应速度,因而与有机物的分解速率有关。据产甲烷菌适宜温度条件的不同,厌氧法可分为常温消化、中温消化和高温消化三种类型。(1)常温消化(10~30℃)(2)中温消化(35~38℃)(3)高温厌氧消化(50~55℃)厌氧消化对温度的突变也十分敏感,要求日变化小于±2℃。温度突变幅度太大,会招致系统的停止产气。二、pH值产酸细菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围较广,在4.5~8.0之间。产甲烷菌要求环境介质pH值在中性附近,最适宜pH值为7.0~7.2,pH6.6~7.4较为适宜。在厌氧法处理废水的应用中,由于产酸和产甲烷大多在同一构筑物内进行,故为了维持平衡,避免过多的酸积累,常保持反应器内的pH值在6.5~7.5(最好在6.8~7.2)的范围内。pH值对产甲烷菌活性的影响020406080100456789pH值相对活性(%)三、氧化还原电位严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;非产甲烷菌可以在氧化还原电位为+100~-100mv的环境正常生长和活动;产甲烷菌的最适氧化还原电位为-150~-400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;四、营养厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:N:P=200:5:1;多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:①K、Na、Ca等金属盐类;②微量元素Ni、Co、Mo、Fe等;③有机微量物质:酵母浸出膏、生物素、维生素等。五、有毒物质——常见的抑制性物质有:硫化物、氨氮、重金属、氰化物及某些有机物;对有机物来说,带醛基、双键、氯取代基、苯环等结构,往往具有抑制性。对厌氧消化具有抑制作用的物质抑制物质浓度/(mg/L)抑制物质浓度/(mg/L)挥发性脂肪酸2000Na3500~5500氨氮1500~3000Fe1710溶解性硫化物200Cr6+3Ca2500~4500Cr3+500Mg1000~1500Cd150K2500~4500二、厌氧反应器厌氧活性污泥法包括普通消化池、厌氧接触工艺、上流式厌氧污泥床反应器等。厌氧生物膜法包括厌氧生物滤池、厌氧流化床、厌氧生物转盘等。(一)、厌氧消化池厌氧消化池主要应用于处理城市污水厂的污泥,也可应用于处理固体含量很高的有机废水;它的主要作用是:①将污泥中的一部分有机物转化为沼气;②将污泥中的一部分有机物转化成为稳定性良好的腐殖质;③提高污泥的脱水性能;④使得污泥的体积减少1/2以上;⑤使污泥中的致病微生物得到一定程度的灭活,有利于污泥的进一步处理和利用。(1)、厌氧消化的基本原理(2)、厌氧消化的条件与影响因素温度污泥投配率营养与碳氮比搅拌PH有毒物质含量(3)厌氧消化的工艺1、消化池的分类:传统消化池和高速消化池。1)传统消化池:传统消化池又称为低速消化池,在池内没有设置加热和搅拌装置,所以有分层现象,一般分为浮渣层、上清液层、活性层、熟污泥层等,其中只有在活性层中才有有效的厌氧反应过程在进行,因此在传统消化池中只有部分容积有效;传统消化池的最大特点就是消化反应速率很低,HRT很长,一般为30~90天。2)高速消化池与传统消化池不同的是,在高速消化池中设有加热和/或搅拌装置,因此缩短了有机物稳定所需的时间,也提高了沼气产量,在中温(30~35C)条件下,其HRT可以为15天左右,运行效果稳定;但搅拌使高速消化池内的污泥得不到浓缩,上清液与熟污泥不易分离。螺旋浆搅拌的消化池3)两级串联消化池两级串联,第一级采用高速消化池,第二级则采用不设搅拌和加热的传统消化池,主要起沉淀浓缩和贮存熟污泥的作用,并分离和排出上清液;二者的体积的比值可采用1:1~4:1,一般为2:1。2、消化池的构造消化池一般由池顶、池底和池体三部分组成;消化池的池顶有两种形式,即固定盖和浮动盖,池顶一般还兼做集气罩,可以收集消化过程中所产生的沼气;消化池的池底一般为倒圆锥形,有利于排放熟污泥。厌氧消化池的特点是:可以直接处理悬浮固体含量较高或颗粒较大的料液。厌氧消化反应与固液分离在同一个池内实现,结构较简单。缺乏持留或补充厌氧活性污泥的特殊装置,消化器中难以保持大量的微生物细胞。对无搅拌的消化器,还存在料液的分层现象严重,微生物不能与料液均匀接触的问题。温度不均匀,消化效率低。消化池的设计计算消化池的设计计算的主要内容包括:①消化池体积的计算与池体设计;②消化池内搅拌设备的设计与计算;③消化池所需要的加热保温系统的设计与计算等。1、消化池的池体设计目前,国内一般按污泥投配率来计算所需的消化池容积,即:式中:V——消化池的有效容积,m3;V’——每天需要处理的新鲜污泥的统计,m3/d;p——污泥投配率。一般当采用高速消化池来处理来自城市

1 / 54
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功