-1-2014届高考物理第二轮复习方案新题之万有引力与航天11.如图所示,一颗行星和一颗彗星绕同一恒星的运行轨道分别为A和B,A是半径为r的圆轨道,B为椭圆轨道,椭圆长轴QQ′为2r。P点为两轨道的交点,以下说法正确的是A.彗星和行星经过P点时受到的万有引力相等B.彗星和行星绕恒星运动的周期相同C.彗星和行星经过P点时的速度相同D.彗星在Q′处加速度为行星加速度的1/4行星加速度的1/4,选项D错误。2.(2013安徽皖南八校联考)2012年6月24日,航天员刘旺手动控制“神舟九号”飞船完成与“天宫一号”的交会对接,形成组合体绕地球圆周运动,速率为v0,轨道高度为340km.。“神舟九号”飞船连同三位宇航员的总质量为m,而测控通信由两颗在地球同步轨道运行的“天链一号”中继卫星、陆基测控站、测量船,以及北京飞控中心完成.下列描述错误的是A..组合体圆周运动的周期约1.5hB..组合体圆周运动的线速度约7.8km/sC..组合体圆周运动的角速度比“天链一号”中继卫星的角速度大D..发射“神舟九号”飞船所需能量是212mv答案:D解析:.组合体圆周运动的周期约1.5h,组合体圆周运动的线速度约7.8km/s,组合体圆周运动的角速度比“天链一号”中继卫星的角速度大,ABC说法正确,发射“神舟九号”-2-飞船所需能量是212mv再加上飞船的引力势能,选项D描述错误。3.(2013沈阳二中测试)我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h的轨道上做匀速圆周运动,运行的周期为T.若以R表示月球的半径,则()A.卫星运行时的线速度为2πRTB.卫星运行时的向心加速度为224)RhT(C.月球的第一宇宙速度为2πR(R+h)3TRD.物体在月球表面自由下落的加速度为4π2RT23.答案:BC解析:卫星运行时的线速度为v=2+RhT,选项A错误;卫星运行时的向心加速度为a=ω2(R+h)=224)RhT(,选项B正确;由GMm/(R+h)2=mω2(R+h),ω=2π/T,v1=GMR,联立解得月球的第一宇宙速度为v1=2πR(R+h)3TR,选项C正确;由GMm/R2=mg,GMm/(R+h)2=mω2(R+h),ω=2π/T,联立解得物体在月球表面自由下落的加速度为g=224T32RhR,选项D错误。4、(2013江苏常州模拟)中国志愿者王跃参与人类历史上第一次全过程模拟从地球往返火星的一次实验“火星—500”活动,王跃走出登陆舱,成功踏上模拟火星表面,在火星上首次留下中国人的足迹,目前正处于从“火星”返回地球途中。假设将来人类一艘飞船从火星返回地球时,经历了如图所示的变轨过程,则下列说法中正确的是:()A、飞船在轨道Ⅱ上运动时,在P点速度大于在Q点的速度B、飞船在轨道Ⅰ上运动时的机械能大于轨道Ⅱ上运动的机械能C、飞船在轨道Ⅰ上运动到P点时的加速度等于飞船在轨道Ⅱ上运动到P点时的加速度D、飞船绕火星在轨道Ⅰ上运动周期跟飞船返回地面的过程中绕地球以轨道Ⅰ同样半径运动的周期相同轨道Ⅱ轨道Ⅰ轨道Ⅲ火星PQ-3-答案:AC解析:由飞船在轨道Ⅱ上运动时机械能守恒可知,飞船在P点速度大于在Q点的速度,选项A正确;飞船从轨道I加速过渡到轨道II,所以飞船在轨道Ⅰ上运动时的机械能小于轨道Ⅱ上运动的机械能,选项B错误;飞船在空间同一点所受万有引力相同,所以飞船在轨道Ⅰ上运动到P点时的加速度等于飞船在轨道Ⅱ上运动到P点时的加速度,选项C正确;飞船绕火星在轨道Ⅰ上运动周期跟飞船返回地面的过程中绕地球以轨道Ⅰ同样半径运动的周期不相同,选项D错误。5.(2013广东汕头金山中学测试)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为A.1.8×103kg/m3B.5.6×103kg/m3C.1.1×104kg/m3D.2.9×104kg/m35.答案:D解析:由G2MmR=mR22T,,ρ=M/V,V=43πR3,解得地球密度ρ=23GT,代人数据可得ρ=0.55×104kg/m3,该行星的平均密度约为地球密度的5倍,所以选项D正确。6.(2013河南漯河联考)“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所。假设目前由美国等国家研制的“空间站”正在地球赤道平面内的圆周轨道上匀速率运行,其离地高度为同步卫星离地高度的十分之一,且运行方向与地球自转方向一致。下列关于该“空间站”的说法正确的有()A.运行的加速度等于其所在高度处的重力加速度B.运行的速度等于同步卫星运行速度的10倍C.站在地球赤道上的人观察到它向东运动D.在“空间站”工作的宇航员因受到平衡力而在其中悬浮或静止答案:AC解析:“空间站”运行的加速度等于其所在高度处的重力加速度,选项A正确;由GMm/r2=mv2/r,解得v=GMr。“空间站”离地高度h为同步卫星离地高度的十分之一,则“空间站”轨道半径为R+h,同步卫星轨道半径为R+10h,“空间站”运行的速度等于同步卫星运行速度的+10+RhRh倍,选项B错误;由于“空间站”运行速度大于地球自转速度,所以站在地球赤道上的人观察到“空间站”向东运动,选项C正确;在“空间站”工作的宇-4-航员因完全失重而在其中悬浮或静止,选项D错误。7.(2013河南漯河联考)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有()A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度答案:ABC解析:航天飞机在椭圆轨道Ⅱ上运动,动能和引力势能之和保持不变,在轨道Ⅱ上经过A的速度小于经过B的速度,选项A正确;航天飞机在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,需要减速,所以在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能,选项B正确;由开普勒第三定律可知轨道Ⅱ半长轴小于轨道I,航天飞机在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,选项C正确;在空间上同一点所受万有引力相等,在轨道Ⅱ上经过A的加速度等于在轨道Ⅰ上经过A的加速度,选项D正确。8.宇航员在地球表面以某一初速度竖直上抛一小球,经过时间t小球落回原处;若他在某一星球表面以相同的初速度竖直上抛同一小球,需经过5t小球落回原处。(取地球表面重力加速度g=10m/s2,空气阻力不计)(1)求该星球表面附近的重力加速度g’;(2)已知该星球的半径r与地球的半径R之比为1:4,求星球的质量M星与地球质量M地之比。.(14分)解题思路:由竖直上抛运动规律得到星球表面附近的重力加速度g’;由星球表面万有引力等于重力解得星球的质量M星与地球质量M地之比。考查要点:竖直上抛运动规律、万有引力定律等。解:(1)设竖直上抛小球初速度v,由匀变速速度公式得:地球表面:gtv0---------------①(3分)星球表面:tgv50--------------②(3分)联解①②式得:g’=2m/s2。--------------③(1分)-5-11.小球在地球或星球表面附近受到的万有引力等于小球重力,得:星球表面附近:gmrmGM2星---------④(3分)地球表面附近:mgRmGM2地------------⑤(3分)联解③④式得:801地星MM------------⑥(1分)评分参考意见:本题满分14分,其中①②④⑤式各3分,③⑥式各1分;若有其他合理解法且答案正确,可同样给分。9.有一探测卫星在地球赤道正上方绕地球做匀速圆周运动,已知地球质量为M,地球半径为R,万有引力常量为G,探测卫星绕地球运动的周期为T。求:(1)探测卫星绕地球做匀速圆周运动时的轨道半径;(2)探测卫星绕地球做匀速圆周运动时的速度大小;(3)在距地球表面高度恰好等于地球半径时,探测卫星上的观测仪器某一时刻能观测到的地球表面赤道的最大弧长。(此探测器观测不受日照影响,不考虑空气对光的折射)解题思路:应用万有引力等于向心力列方程得到探测卫星绕地球做匀速圆周运动时的轨道半径和速度大小;画出示意图,根据图中几何关系和相关知识得到探测卫星上的观测仪器某一时刻能观测到的地球表面赤道的最大弧长。考查要点:万有引力定律、牛顿运动定律等。解析:(1)设卫星质量为m,卫星绕地球运动的轨道半径为r,根据万有引力定律和牛顿运动定律得:2224TrmrMmG……………………………………………………2分解得3224GMTr…………………………………………………1分(2)设宇宙飞船绕地球做匀速圆周运动时的速度大小为v,322TGMTrv…………………………………………………3分-6-(3)设宇宙飞船在地球赤道上方A点处,距离地球中心为2R,飞船上的观测仪器能观测到地球赤道上的B点和C点,能观测到赤道上的弧长是LBC,如图所示,cos=RR2=21,则:=60……………………………………1分观测到地球表面赤道的最大长度LBC=2R/3……………………2分10.如图所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ωo,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?解析:(1)由万有引力定律和向心力公式得G2MmRh=m224T(R+h)忽略地球自转影响有G2MmR=mg解得TB=3224RhgR.(2)设A、B两卫星经时间t再次相距最近,由题意得(ωB-ω0)t=2π,又有ωB=2π/TB,解得t=2032-gRRh11.宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度0v抛出一个小球,测得小球经时间t落到斜坡另一点Q上,斜坡的倾角,已知该星球的半径为R,引力常量为R2ROA15题答案图BC-7-G,求该星球的密度(已知球的体积公式是334RV)。解析:由题意得tvx01分221gty1分由xytan1分得tvgtan202分2mmGmgR星2分又有334RV,Vm星,联立解得:tRGv2tan303分