2014年山东省德州市中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。)1.(2014山东省德州市,1,3分)下列计算正确的是A.—(-3)2=9B.3273C.-(-2)0=1D.332.(2014山东省德州市,2,3分)下列银行标志中,既不是中心对称图形也不是轴对称图形的是3.(2014山东省德州市,3,3分)图甲是某零件的直观图,则它的主视图为4.(2014山东省德州市,4,3分)第六次全国人口普查数据显示,德州市常住人口约为556.82万人,此数用科学记数法表示正确的是A.556.82×104B.5.5682×102C.5.5682×106D.5.5682×1055.(2014山东省德州市,5,3分)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为A.30°B.60°C.80°D.120°6.(2014山东省德州市,6,3分)不等式组020131xx,>的解集在数轴上可表示为7.(2014山东省德州市,7,3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1∶2,则斜坡AB的长为A.34米B.56米C.512米D.24米第5题图ABCDABCD8.j(2014山东省德州市,8,3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离。根据图象提供的信息,以下四个说法错.误.的是A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时9.(2014山东省德州市,9,3分)雷霆队的杜兰特当选为2013-2014赛季NBA常规赛MVP,下表是他8场比赛的得分场次12345678得分3028283823263942则这8场比赛得分的众数与中位数分别为A.2928B.2829C.2828D.282710.(2014山东省德州市,10,3分)下列命题中,真命题是A.若a>b,则c-a<c-bB.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C.点M(x1,y1),点N(x2,y2)都在反比例函数xy1的图象上,若x1>x2,则y1<y2D.甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为42甲S,92乙S,这一过程中乙发挥比甲更稳定11.(2014省市,11,3分)分式方程)2)(1(311xxxx的解是A.x=1B.51xC.x=2D.无解12.(2014山东省德州市,12,3分)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=52以上结论中,你认为正确的有()个。A.1B.2C.3D.4第8题图第15题图第7题图第12题图二、填空题(本大题共5小题,每小题4分,满分20分.)13.(2014山东省德州市,13,4分)31的相反数是.14.(2014山东省德州市,14,4分)若2244xxy,则(x+y)y=.15.(2014山东省德州市,15,4分)如图,正三角形ABC的边长为2,D,E,F分别为BA,CA,AB的中点,以A,B,C三点为圆心,半径为1作圆,则图中阴影部分的面积是.16.(2014山东省德州市,16,4分)方程x2+2kx+k2-2k+1=0的两个实数根x1,x2满足42221xx,则k的值为.17.js(2014山东省德州市,17,4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…Mn,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3,…An,…。则顶点M2014的坐标为(,)三、解答题(本大题共7小题,满分64分,解答应写出文字说明、证明过程或演算步骤)18.(2014省市,18,6分)先化简,再求值:14422222bababababa,其中a=2sin60°-tan45°,b=1。19.(2014山东省德州市,19,8分)2014年5月,我市某中学举行了“中国梦·校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,并绘制了不完整的两种统计图。根据图中提供的信息,回答下列问题:(1)参加演讲比赛的学生共有人,并把条形图补充完整;(2)扇形统计图中,m=,n=;C等级对应的圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的演讲比赛,请利用列表法或树形图法,求获A等级的小明参加市比赛的概率.20.(2014山东省德州市,20,8分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?21.(2014山东省德州市,21,10分)如图,双曲线)0(>xxky经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.第19题图22.(2014山东省德州市,22,10分)如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC,AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.23.(2014山东省德州市,23,10分)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=21∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等。接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间夹角为70°,试求此时两舰艇之间的距离。24.(2014山东省德州市,24,12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形,若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.第22题第23题图2第23题图3第21题图第23题图1第24题备用图第24题图