四川省雅安市2014年中考数学试卷参考答案与试题解析一、单项选择题(共12小题,每小题3分,共36分)1.(3分)(2014•雅安)π0的值是()A.πB.0C.1D.3.14考点:零指数幂..分析:根据零指数幂的运算法则计算即可.解答:解:π0=1,故选:C.点评:本题主要考查了零指数幂的运算.任何非0数的0次幂等于1.2.(3分)(2014•雅安)在下列四个立体图形中,俯视图为正方形的是()A.B.C.D.考点:简单几何体的三视图..分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:A、俯视图是一个圆,故本选项错误;[来源:Zxxk.Com]B、俯视图是带圆心的圆,故本选项错误;C、俯视图是一个圆,故本选项错误;D、俯视图是一个正方形,故本选项正确;故选:D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.从上面看得到的图形是俯视图.3.(3分)(2014•雅安)某市约有4500000人,该数用科学记数法表示为()A.0.45×107B.4.5×106C.4.5×105D.45×105考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4500000有7位,所以可以确定n=7﹣1=6.解答:解:4500000=4.5×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2014•雅安)数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A.1B.3C.1.5D.2考点:中位数;算术平均数..分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2014•雅安)下列计算中正确的是()A.+=B.=3C.a6=(a3)2D.b﹣2=﹣b2考点:幂的乘方与积的乘方;有理数的加法;立方根;负整数指数幂.分析:根据分数的加法,可判断A;根据开方运算,可判断B;根据幂的乘方底数不变指数相乘,可判断C;根据负整指数幂,可判断D.解答:解:A、先通分,再加减,故A错误;B、负数的立方根是负数,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、b﹣2=,故D错误;故选:C.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘.6.(3分)(2014•雅安)若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.0C.1D.2考点:代数式求值..专题:整体思想.分析:把(m+n)看作一个整体并代入所求代数式进行计算即可得解.解答:解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选A.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(3分)(2014•雅安)不等式组的最小整数解是()A.1B.2C.3D.4考点:一元一次不等式组的整数解..分析:分别解两个不等式,然后求出不等式组的解集,最后找出最小整数解.解答:解:,解①得:x≥1,解②得:x>2,则不等式的解集为x>2,故不等式的最小整数解为3.故选C.点评:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(3分)(2014•雅安)如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°考点:旋转的性质..分析:因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.解答:解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C.点评:本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.9.(3分)(2014•雅安)a、b、c是△ABC的∠A、∠B、∠C的对边,且a:b:c=1::,则cosB的值为()A.B.C.D.考点:勾股定理的逆定理;锐角三角函数的定义..分析:先由勾股定理的逆定理判定△ABC是直角三角形,再利用余弦函数的定义即可求解.解答:解:∵a:b:c=1::,∴b=a,c=a,∴a2+b2=a2+(a)2=3a2=c2,∴△ABC是直角三角形,∠C=90°,∴cosB===.故选B.点评:本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,同时考查了余弦函数的定义:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.10.(3分)(2014•雅安)在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a、b),则=()A.﹣2B.2C.4D.﹣4考点:关于原点对称的点的坐标;立方根;关于x轴、y轴对称的点的坐标..分析:利用关于原点对称点的坐标性质得出P点坐标,进而利用关于x轴对称点的坐标性质得出P2坐标,进而得出答案.解答:解:∵P点关于原点的对称点为P1(﹣3,﹣),∴P(3,),∵P点关于x轴的对称点为P2(a,b),∴P2(3,﹣),∴==﹣2.故选:A.点评:此题主要考查了关于原点对称点的性质以及关于x轴对称点的性质,得出P点坐标是解题关键.11.(3分)(2014•雅安)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A.3:4B.4:3C.7:9D.9:7考点:平行四边形的性质;相似三角形的判定与性质..分析:利用平行四边形的性质得出△FAE∽△FBC,进而利用相似三角形的性质得出=,进而得出答案.解答:解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE:S四边形ABCE=9:7.故选:D.点评:此题主要考查了平行四边形的性质和相似三角形的判定与性质,得出=是解题关键.12.(3分)(2014•雅安)如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5B.4C.3D.2考点:正方形的性质;全等三角形的判定与性质;勾股定理..分析:过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=CD,再利用勾股定理列式求出CE,根据正方形的性质求出OC=OD=a,然后利用四边形OCED的面积列出方程求出a2,再根据正方形的面积公式列式计算即可得解.解答:解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,∴OC=OD,在△COM和△DON中,,∴△COM≌△DON(AAS),∴OM=ON,∴四边形OMEN是正方形,设正方形ABCD的边长为2a,则OC=OD=×2a=a,∵∠CED=90°,∠DCE=30°,∴DE=CD=a,由勾股定理得,CE===a,∴四边形OCED的面积=a•a+•(a)•(a)=×()2,解得a2=1,所以,正方形ABCD的面积=(2a)2=4a2=4×1=4.故选B.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题(共5小题,每小题3分,共15分)13.(3分)(2014•雅安)函数y=的自变量x的取值范围为x≥﹣1.考点:函数自变量的取值范围..分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2014•雅安)已知:一组数1,3,5,7,9,…,按此规律,则第n个数是2n﹣1.考点:规律型:数字的变化类..分析:观察1,3,5,7,9,…,所给的数,得出这组数是从1开始连续的奇数,由此表示出答案即可.解答:解:1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,9=2×5﹣1,…,则第n个数是2n﹣1.故答案为:2n﹣1.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题.15.(3分)(2014•雅安)若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”数,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为.考点:概率公式..分析:首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可.解答:解:由2,3,4这三个数字组成的无重复数字为234,243,324,342,432,423六个,而“V”数有2个,故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为=,故答案为:.点评:本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.16.(3分)(2014•雅安)在平面直角坐标系中,O为坐标原点,则直线y=x+与以O点为圆心,1为半径的圆的位置关系为相切.考点:直线与圆的位置关系;坐标与图形性质..分析:首先求得直线与坐标轴的交点坐标,然后求得原点到直线的距离,利用圆心到直线的距离和圆的半径的大小关系求解.解答:解:令y=x+=0,解得:x=﹣,令x=0,解得:y=,所以直线y=x+与x轴交于点(﹣,0),与y轴交于点(0,),设圆心到直线y=x+的距离为r,则r==1,∵半径为1,∴d=r,∴直线y=x+与以O点为圆心,1为半径的圆的位置关系为相切,故答案为:相切.点评:本题考查了直线与圆的位置关系及坐标与图形的性质,属于基础题,比较简单.17.(3分)(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m=0.考点:根与系数的关系;根的判别式..分析:根据方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,得出x1+x2与x1x2的值,再根据x12+x22=3,即可求出m的值.解答:解:∵方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2﹣1,∵x12+x22=(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=3,解得:x1=0,x2=2(不合题意,舍去),∴m=0;故答案为:0.点评:本题考查了根与系数的关系及根的判别式,难度适中,关键掌握x1