2014年全国统一高考数学试卷(理科)(大纲版)菁优网©2010-2014菁优网2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)(2014•广西)设z=,则z的共轭复数为()A.﹣1+3iB.﹣1﹣3iC.1+3iD.1﹣3i2.(5分)(2014•广西)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]3.(5分)(2014•广西)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b4.(5分)(2014•广西)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.5.(5分)(2014•广西)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)(2014•广西)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=17.(5分)(2014•广西)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.18.(5分)(2014•广西)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.9.(5分)(2014•广西)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.10.(5分)(2014•广西)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6B.5C.4D.3菁优网©2010-2014菁优网11.(5分)(2014•广西)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.12.(5分)(2014•广西)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)(2014•广西)的展开式中x2y2的系数为_________.(用数字作答)14.(5分)(2014•广西)设x、y满足约束条件,则z=x+4y的最大值为_________.15.(5分)(2014•广西)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_________.16.(5分)(2014•广西)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是_________.三、解答题17.(10分)(2014•广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)(2014•广西)等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=,求数列{bn}的前n项和Tn.19.(12分)(2014•广西)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.菁优网©2010-2014菁优网20.(12分)(2014•广西)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)(2014•广西)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)(2014•广西)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤.菁优网©2010-2014菁优网2014年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)(2014•广西)设z=,则z的共轭复数为()A.﹣1+3iB.﹣1﹣3iC.1+3iD.1﹣3i考点:复数代数形式的乘除运算;复数的基本概念.菁优网版权所有专题:数系的扩充和复数.分析:直接由复数代数形式的除法运算化简,则z的共轭可求.解答:解:∵z==,∴.故选:D.点评:本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)(2014•广西)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]考点:交集及其运算.菁优网版权所有专题:集合.分析:求解一元二次不等式化简集合M,然后直接利用交集运算求解.解答:解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.点评:本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)(2014•广西)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b考点:正切函数的单调性.菁优网版权所有专题:三角函数的求值.分析:可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.解答:解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C菁优网©2010-2014菁优网点评:本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)(2014•广西)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.考点:平面向量数量积的运算.菁优网版权所有专题:平面向量及应用.分析:由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.解答:解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.点评:本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)(2014•广西)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种考点:排列、组合及简单计数问题;排列、组合的实际应用.菁优网版权所有专题:排列组合.分析:根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.解答:解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选C.点评:本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)(2014•广西)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1考点:椭圆的简单性质.菁优网版权所有专题:计算题;圆锥曲线的定义、性质与方程.分析:利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.解答:解:∵△AF1B的周长为4,∴4a=4,菁优网©2010-2014菁优网∴a=,∵离心率为,∴c=1,∴b==,∴椭圆C的方程为+=1.故选:A.点评:本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)(2014•广西)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.1考点:导数的几何意义.菁优网版权所有专题:导数的概念及应用.分析:求函数的导数,利用导数的几何意义即可求出对应的切线斜率.解答:解:函数的导数为f′(x)=ex﹣1+xex﹣1=(1+x)ex﹣1,当x=1时,f′(1)=2,即曲线y=xex﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.点评:本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)(2014•广西)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.考点:球内接多面体;球的体积和表面积.菁优网版权所有专题:计算题;空间位置关系与距离.分析:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.解答:解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.点评:本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.菁优网©2010-2014菁优网9.(5分)(2014•广西)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.考点:双曲线的简单性质.菁优网版权所有专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.解答:解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===,故选:A.点评:本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)(2014•广西)等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6B.5C.4D.3考点:等比数列的性质;对数的运算性质.菁优网版权所有专题:等差数列与等比数列.分析:由等比数列的性质可得a1•a8=a2•a7=…a4•a5=10,由对数的运算性质,整体代入计算可得.解答:解:∵等比数列{an}中a4=2,a5=5,∴a4•a5=2×5=10,∴数列{lgan}的前8项和S=lga1+lga2+…+lga8=lg(a1•a2…a8)=lg(a4•a5)4=4lg(a4•a5)=4lg10=4故选:C点评:本题考查等比数列的性质,涉及对数的运算,属中档题.11.(5分)(2014•广西)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.菁优网©2010-2014菁优网考点:异面直线及其所成的角.菁优网版权所有专题:空间角.分析:首先作出二面角的平