2014年江苏省无锡市崇安区东林中学八年级下册第9章《中心对称图形》单元测试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°考点:旋转的性质.专题:压轴题;网格型;数形结合.分析:△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC的三边关系解答.解答:解:如图,设小方格的边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.点评:本题考查了旋转的性质,旋转前后对应角相等,本题也可通过两角互余的性质解答.3.(3分)在▱ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(3分)如图,▱ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOBB.AC=BDC.AC⊥BDD.▱ABCD是轴对称图形考点:平行四边形的性质.分析:由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.解答:解:∵▱ABCD的对角线AC、BD相交于点O,∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.故A正确,B,C,D错误.故选:A.点评:此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.5.(3分)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形考点:平行四边形的判定;作图—复杂作图.专题:压轴题.分析:利用平行四边形的判定方法可以判定四边形ABCD是平行四边形.解答:解:∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BCAB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.点评:本题考查了平行四边形的判定,解题的关键是熟记平行四边形的判定方法.6.(3分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cmB.4cmC.2cmD.1cm考点:矩形的性质;翻折变换(折叠问题).分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.解答:解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选C.点评:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.7.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25B.20C.15D.10考点:菱形的性质;等边三角形的判定与性质.分析:由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.解答:解:∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是20.故选B.点评:本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明△ABC是等边三角形.8.(3分)如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是()A.18米B.24米C.28米D.30米考点:三角形中位线定理.分析:根据D、E是OA、OB的中点,即DE是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.解答:解:∵D、E是OA、OB的中点,即CD是△OAB的中位线,∴DE=AB,∴AB=2CD=2×14=28m.故选C.点评:本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.9.(3分)若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形考点:矩形的判定;三角形中位线定理.分析:此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解答:解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选C.点评:本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.10.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.4﹣2D.3﹣4考点:正方形的性质.专题:压轴题.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选C.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题(每空2分,共18分)11.(2分)如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=4.考点:三角形中位线定理;平行四边形的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故答案为:4.点评:此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.12.(2分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=2.考点:平行四边形的性质.分析:根据角平分线的定义可得∠1=∠2,再根据两直线平行,内错角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根据等角对等边的性质可得AD=DE,CE=CF,根据平行四边形对边相等代入数据计算即可得解.解答:解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC﹣DE=AB﹣AD=5﹣3=2,∴CF=2.故答案为:2.点评:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,平行线的性质,比较简单,熟记性质是解题的关键.13.(2分)如图,在平行四边形ABCD中,对角线交于点0,点E、F在直线AC上(不同于A、C),当E、F的位置满足AE=CF的条件时,四边形DEBF是平行四边形.考点:平行四边形的判定与性质.分析:当AE=CF时四边形DEBF是平行四边形;根据四边形ABCD是平行四边形,可得DO=BO,AO=CO,再由条件AE=CF可得EO=FO,根据对角线互相平分的四边形是平行四边形可判定四边形DEBF是平行四边形.解答:解:当AE=CF时四边形DEBF是平行四边形;∵四边形ABCD是平行四边形,∴DO=BO,AO=CO,∵AE=CF,∴EO=FO,∴四边形DEBF是平行四边形,故答案为:AE=CF.点评:此题主要考查了平行四边形的判定与性质,关键是掌握对角线互相平分的四边形是平行四边形.14.(4分)如图,DE∥BC,DE=EF,AE=EC,则图中的四边形ADCF是平行四边形,四边形BCFD是平行四边形.(选填“平行四边形、矩形、菱形、正方形”)考点:平行四边形的判定;全等三角形的判定与性质.分析:根据对角线互相平分的四边形是平行四边形可得四边形ADCF是平行四边形;首先证明△ADE≌△CFE可得∠A=∠ECF,进而得到AB∥CF,再根据两组对边分别平行的四边形是平行四边形可得四边形BCFD是平行四边形.解答:解:连接DC、AF,∵DE=EF,AE=EC,∴四边形ADCF是平行四边形;在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,∴AB∥CF,又∵DE∥BC,∴四边形BCFD是平行四边形;故答案为:平行四边形;平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形;两组对边分别平行的四边形是平行四边形.15.(2分)如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为60度时,四边形ABFE为矩形.考点:矩形的判定.专题:计算题.分析:根据矩形的性质和判定.解答:解:如果四边形ABFE为矩形,根据矩形的性质,那么AF=BE,AC=BC