第六章细胞的能量转换─线粒体和叶绿体线粒体和叶绿体是细胞内的两种产能细胞器。●线粒体与氧化磷酸化●叶绿体与光合作用●线粒体和叶绿体是半自主性细胞器●线粒体和叶绿体的增殖与起源第一节线粒体与氧化磷酸化●线粒体的形态结构●线粒体的化学组成及酶的定位●氧化磷酸化一、线粒体的形态结构1.1线粒体的发现与功能研究•1890年R.Altaman首次动物细胞内发现线粒体,命名为bioblast。•1897年Benda首次将这种颗粒命名为mitochondrion。•1900年L.Michaelis用JanusGreenB对线粒体进行活体染色,发现线粒体中可进行氧化-还原反应。•1948年,Green证实线粒体含所有三羧酸循环的酶•1943-1950年,Kennedy和Lehninger发现线粒体内完成的,脂肪酸氧化、氧化磷酸化。•在Hatefi等(1976)纯化了呼吸链四个独立的复合体。•Mitchell(1961-1980)提出了氧化磷酸化的化学偶联学说。•1994年,Boyer因提出ATP合成酶的结合变化和旋转催化机制获得诺贝尔化学奖1.2线粒体的形态结构•线粒体的形态、大小、数量与分布–线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分杈状或其它形状。数目一般数百到数千个,线粒体通常分布在细胞功能旺盛的区域。•线粒体的超微结构–外膜(outermembrane):含孔蛋白(porin),通透性较高。–内膜(innermembrane):高度不通透性,向内折叠形成嵴(cristae),嵴能显著扩大内膜表面积(达5~10倍)。含有与能量转换相关的蛋白(执行氧化反应的电子传递链酶系、ATP合成酶、线粒体内膜转运蛋白)。–膜间隙(intermembranespace):含许多可溶性酶、底物及辅助因子。–基质(matrix):含三羧酸循环、脂肪酸和丙酮酸氧化等酶系、线粒体基因表达酶系等以及线粒体DNA,RNA,核糖体。图7-3肌细胞和精子的尾部聚集较多的线粒体,以提供能量图7-4线粒体包围着脂肪滴,内有大量要被氧化的脂肪图7-1线粒体的TEM照片内膜向线粒体基质褶入形成嵴(cristae),嵴能显著扩大内膜表面积(达5~10倍),嵴有两种类型:①板层状(图7-1)、②管状(图7-3),但多呈板层状。图7-3管状嵴线粒体嵴上覆有基粒(elementaryparticle),基粒由头部(F1偶联因子)和基部(F0偶联因子)构成,F0嵌入线粒体内膜。图7-1线粒体的TEM照片二、线粒体的化学组成及酶的定位•线粒体的化学组成:–蛋白质(线粒体干重的65~70%)。线粒体的蛋白质分为可溶性和不溶性的。可溶性的蛋白质主要是基质的酶和膜的外周蛋白;不溶性的蛋白质构成膜的本体,其中一部分是镶嵌蛋白,也有一些是酶蛋白。–脂类(线粒体干重的25~30%):•磷脂占3/4以上,外膜主要是卵磷脂,内膜主要是心磷脂。•线粒体脂类和蛋白质的比值:0.3:1(内膜);1:1(外膜)•线粒体酶的定位:线粒体主要酶的分布部位酶的名称部位酶的名称外膜单胺氧化酶NADH-细胞色素c还原酶(对鱼藤酮不敏感)犬尿酸羟化酶酰基辅酶A合成酶膜间隙腺苷酸激酶二磷酸激酶核苷酸激酶内膜细胞色素b,c,c1,a,a3氧化酶ATP合成酶系琥珀酸脱氢酶β-羟丁酸和β-羟丙酸脱氢酶肉毒碱酰基转移酶丙酮酸氧化酶NADH脱氢酶(对鱼藤酮敏感)基质柠檬酸合成酶、苹果酸脱氢酶延胡索酸酶、异柠檬酸脱氢酶顺乌头酸酶、谷氨酸脱氢酶脂肪酸氧化酶系、天冬氨酸转氨酶、蛋白质和核酸合成酶系、丙酮酸脱氢酶复合物线粒体膜通透性**很早就认识到线粒体的膜具有半透性,通过对半透性的研究导致线粒体各组分分离方法的建立。■线粒体通透性研究将线粒体放在100mM蔗糖溶液中,蔗糖穿过外膜进入线粒体的膜间间隙;然后将线粒体取出测定线粒体内部蔗糖的平均浓度,结果只有50mM,比环境中蔗糖的浓度低。线粒体外膜对蔗糖是通透的,而内膜对蔗糖是不通透的(图7-7)。左:将线粒体置于含有100mM的蔗糖溶液中;中:蔗糖穿过线粒体外膜,达到平衡;右:将线粒体从蔗糖溶液中取出,测定线粒体中蔗糖的浓度。如果测得线粒体的蔗糖平均浓度是50mM,就可以推测:100mM的蔗糖仅仅穿过了线粒体外膜,而线粒体中有一半流动的液体在线粒体基质,由于内膜对蔗糖不通透,所以测得的线粒体平均浓度只有50mM。■线粒体各组分的分离图7-8线粒体组分的分离首先将线粒体置于低渗溶液中使外膜破裂,此时线粒体内膜和基质(线粒体质)仍结合在一起,通过离心可将线粒体质分离。用去垢剂毛地黄皂苷处理线粒体质,破坏线粒体内膜,释放线粒体基质,破裂的内膜重新闭合形成小泡,其表面有F1颗粒。由于线粒体外膜的通透性比内膜高,利用这一性质,DonalParsons和他的同事最先建立了分离线粒体内膜、外膜及其他组分的方法(图7-8),线粒体的功能:氧化磷酸化、细胞凋亡、细胞的信号转导、电解质稳态平衡调控、钙的稳态调控进行氧化磷酸化,合成ATP,为细胞生命活动提供直接能量是线粒体的主要功能。什么是氧化磷酸化:–当电子从NADH或FADH2经呼吸链传递给氧形成水时,同时伴有ADP磷酸化形成ATP,这一过程称为氧化磷酸化。什么是呼吸链:–在线粒体内膜上存在有关氧化磷酸化的脂蛋白复合物,它们是传递电子的酶体系,由一系列可逆地接受和释放电子或H+的化学物质组成,在内膜上相互关联地有序排列,称为电子传递链(electron-transportchain)或呼吸链(respiratorychain)。三、氧化磷酸化(一)氧化磷酸化的分子基础电子载体呼吸链电子载体主要有:黄素蛋白、细胞色素、铜原子、铁硫蛋白、辅酶Q等。1.NAD即烟酰胺嘌呤二核苷酸(nicotinamideadeninedinucleotide,图7-4),是体内很多脱氢酶的辅酶,连接三羧酸循环和呼吸链,其功能是将代谢过程中脱下来的氢交给黄素蛋白。图7-4NAD的结构和功能(NAD+:R=H,NADP+:R=-PO3H2)2.黄素蛋白:含FMN(图7-5)或FAD(图7-6)的蛋白质,每个FMN或FAD可接受2个电子2个质子。呼吸链上具有FMN为辅基的NADH脱氢酶,以FAD为辅基的琥珀酸脱氢酶。图7-5FMN(flavinadeninemononucleotide)的分子结构图7-6FAD(flavinadeninedinucleotide)的分子结构3.细胞色素分子中含有血红素铁(图7-7),以共价形式与蛋白结合,通Fe3+、Fe2+形式变化传递电子,呼吸链中有5类,即:细胞色素a、a3、b、c、c1,其中a、a3含有铜原子。图7-7血红素c的结构4.铁硫蛋白:在其分子结构中每个铁原子和4个硫原子结合,通过Fe2+、Fe3+互变进行电子传递,有2Fe-2S和4Fe-4S两种类型(图7-8)。图7-8铁硫蛋白的结构((引自Lodish等1999)5.辅酶Q:是脂溶性小分子量的醌类化合物,通过氧化和还原传递电子(图7-9)。有3种氧化还原形式即氧化型醌Q,还原型氢醌(QH2)和介于两者之者的自由基半醌(QH)。图7-9辅酶Q(二)呼吸链的复合物利用脱氧胆酸(deoxycholate,一种离子型去污剂)处理线粒体内膜、分离出呼吸链的4种复合物,即复合物Ⅰ、Ⅱ、Ⅲ和Ⅳ,辅酶Q和细胞色素C不属于任何一种复合物。辅酶Q溶于内膜、细胞色素C位于线粒体内膜的C侧,属于膜的外周蛋白。1、复合物Ⅰ即NADH脱氢酶,哺乳动物的复合物Ⅰ由42条肽链组成,呈L型,含有一个FMN和至少6个铁硫蛋白,分子量接近1MD,以二聚体形式存在,其作用是催化NADH的2个电子传递至辅酶Q,同时将4个质子由线粒体基质(M侧)转移至膜间隙(C侧)。电子传递的方向为:NADH→FMN→Fe-S→Q,总的反应结果为:NADH+5H+(M)+Q→NAD++QH2+4H+(C)2、复合物Ⅱ即琥珀酸脱氢酶,至少由4条肽链组成,含有一个FAD,2个铁硫蛋白,其作用是催化电子从琥珀酸转至辅酶Q,但不转移质子。电子传递的方向为:琥珀酸→FAD→Fe-S→Q。反应结果为:琥珀酸+Q→延胡索酸+QH23、复合物Ⅲ即细胞色素c还原酶,由至少11条不同肽链组成,以二聚体形式存在,每个单体包含两个细胞色素b(b562、b566)、一个细胞色素c1和一个铁硫蛋白。其作用是催化电子从辅酶Q传给细胞色素c,每转移一对电子,同时将4个质子由线粒体基质泵至膜间隙(2个来自UQ,2个来自基质跨膜)。总的反应结果为:2还原态cytc1+QH2+2H+(M)→2氧化态cytc1+Q+4H+(C)复合物Ⅲ的电子传递比较复杂,和“Q循环”有关(图7-10)。辅酶Q能在膜中自由扩散,在内膜C侧,还原型辅酶Q(氢醌)将一个电子交给Fe-S→细胞色素c1→细胞色素c,被氧化为半醌,并将一个质子释放到膜间隙,半醌将电子交给细胞色素b566→b562,释放另外一个质子到膜间隙。细胞色素b566得到的电子为循环电子,传递路线为:半醌→b566→b562→辅酶Q。在内膜M侧,辅酶Q可被复合体Ⅰ(复合体Ⅱ)或细胞色素b562还原为氢醌。一对电子由辅酶Q到复合物Ⅲ的电子传递过程中,共有四个质子被转移到膜间隙,其中两个质子是辅酶Q转移的。•Qcycle•组成:即细胞色素c氧化酶,二聚体,每个单体至少13条肽链。分为三个亚单位:亚单位I(subunitI):包含两个血红素(a1、a3)和一个铜离子(Cu2+),血红素a3和Cu2+形成双核的Fe-Cu中心。亚单位Ⅱ(subunitⅡ),包含两个铜离子(CuA)构成的双核中心,其结构与2Fe-2S相似。亚单位Ⅲ(subunitⅢ)的功能尚不了解。•作用:将从细胞色素c接受的电子传给氧,每转移一对电子,在M侧消耗2个质子,同时转移2个质子至C侧。•电子传递的路线为:cytc→CuA→hemea→a3-CuB→O2•4还原态cytc+8H+M+O2→4氧化态cytc+4H+C+2H2O4.复合物IV:细胞色素c氧化酶wzf:细胞色素C是内膜的外周蛋白。wzf:CoQ和细胞色素C是呼吸链中可移动的递氢体,不是复合物中的组成成分。wzf:氧化型CoQ趋向于内膜的基质侧,还原型CoQ趋向于内膜的间隙侧。(三)两条主要的呼吸链•①复合物I-III-IV组成,催化NADH的脱氢氧化。•②复合物II-III-IV组成,催化琥珀酸的脱氢氧化。•对应于每个复合物Ⅰ,约需3个复合物Ⅲ,7个复合物Ⅳ,两个复合物之间由辅酶Q或细胞色素c这样的可扩散性分子连接。呼吸链各组分的排列是高度有序的使电子按氧化还原电位从低向高传递,呼吸链中有三个部位有较大的自由能变化,足以使ADP与无机磷结合形成ATP。部位Ⅰ在NADH至CoQ之间。部位Ⅱ在细胞色素b和细胞色素c之间。部位Ⅲ在细胞色素a和氧之间。NADHFMNFe-SFADFe-S琥珀酸CytbFe-SCytc1Cytaa3CoQCytcADP+PiATPADP+PiATPADP+PiATP呼吸链组分按氧化还原电位由低到高排列(四)ATP合成酶(磷酸化的分子基础)•分子结构–基粒(elementaryparticle),基粒由头部(F1偶联因子)和基部(F偶联因子)构成,F0嵌入线粒体内膜。–F1由5种多肽组成α3β3γδε复合体,具有三个ATP合成的催化位点(每个β亚基具有一个)。α和β单位交替排列,状如桔瓣。γ贯穿αβ复合体(相当于发电机的转子),并与F0接触,ε帮助γ与F0结合。δ与F0的两个b亚基形成固定αβ复合体的结构(相当于发电机的定子)。–F0由三种多肽组成ab2c12复合体,嵌入内膜,12个c亚基组成一个环形结构,具有质子通道,可使质子由膜间隙流回基质。•工作特点:–可逆性复合酶,即既能利用质子电化学梯度储存的能量合成ATP,又能水解ATP将质子从基质泵到膜间隙。ATPsynthase氧化磷酸化的偶联机制—化学渗透假说•化学渗透假说内容:–当电子沿呼吸链传递时,所释放的能量将质子从内膜基质侧(M侧)泵至膜间隙(胞质侧或C侧),由于线粒体内膜