2015年中考数学压轴题及答案精选(三)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015年中考数学压轴题汇编(三)61.(12分)(2015•德州)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.考点:二次函数综合题.菁优网版权所有分析:(1)利用根据与系数的关系得出α+β=,αβ=﹣2,进而代入求出m的值即可得出答案;(2)利用轴对称求最短路线的方法,作点D关于y轴的对称点D′,点E关于x轴的对称点E′,得出四边形DNME的周长最小为:D′E′+DE,进而利用勾股定理求出即可;(3)利用平行四边形的判定与性质结合P点纵坐标为±4,进而分别求出即可.解答:解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,α+β=,αβ=﹣2,∵=﹣2,∴=﹣2,即=﹣2,解得:m=1,故抛物线解析式为:y=﹣x2+4x+2;(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,∵y=﹣x2+4x+2=﹣(x﹣2)2+6,∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,∴E点坐标为:(4,2),作点D关于y轴的对称点D′,点E关于x轴的对称点E′,则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),连接D′E′,交x轴于M,交y轴于N,此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,则D′E′===10,设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,∴DE===2,∴四边形DNME的周长最小值为:10+2;(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,∴PH=DG=4,∴|y|=4,∴当y=4时,﹣x2+4x+2=4,解得:x1=2+,x2=2﹣,当y=﹣4时,﹣x2+4x+2=﹣4,解得:x3=2+,x4=2﹣,故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).点评:此题主要考查了平行四边形的性质以及勾股定理、利用轴对称求最短路线等知识,利用数形结合以及分类讨论得出P点坐标是解题关键.62.(12分)(2015•包头)已知抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为S1,S2和S3,用等式表示S1,S2,S3之间的数量关系,并说明理由;(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.考点:二次函数综合题.菁优网版权所有分析:(1)利用待定系数法求出抛物线的解析式,用配方法把一般式化为顶点式求出点D的坐标;(2)根据点的坐标求出△AOC,△BOC的面积,利用勾股定理的逆定理判断△BCD为直角三角形,求出其面积,计算即可得到答案;(3)假设存在,设点M的坐标为(m,0),表示出MA的长,根据MN∥BC,得到比例式求出AN,根据△AMN∽△ACM,得到比例式求出m,得到点M的坐标,求出BC的解析式,根据MN∥BC,设直线MN的解析式,求解即可.解答:解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣3,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点D的坐标为:(1,﹣4);(2)S1+S3=S2,过点D作DE⊥x轴于点E,DF⊥y轴于F,由题意得,CD=,BD=2,BC=3,CD2+BC2=BD2,∴△BCD是直角三角形,S1=×OA×OC=,S2=×OB×OC=S3,=×CD×BC=3,∴S1+S3=S2;(3)存在点M使∠AMN=∠ACM,设点M的坐标为(m,0),∵﹣1<m<3,∴MA=m+1,AC=,∵MN∥BC,∴=,即=,解得,AN=(m+1),∵∠AMN=∠ACM,∠MAN=∠CAM,∴△AMN∽△ACM,∴=,即(m+1)2=•(m+1),解得,m1=,m2=﹣1(舍去),∴点M的坐标为(,0),设BC的解析式为y=kx+b,把B(3,0),C(0,﹣3)代入得,,解得,则BC的解析式为y=x﹣3,又MN∥BC,∴设直线MN的解析式为y=x+b,把点M的坐标为(,0)代入得,b=﹣,∴直线MN的解析式为y=x﹣.点评:本题考查的是二次函数的解析式的确定和相似三角形的判定和性质,灵活运用待定系数法二次函数和一次函数求解析式是解题的关键,注意一元二次方程的解法和勾股定理逆定理的运用.63.(12分)(2015•恩施州)矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.(1)求AD的长;(2)求阴影部分的面积和直线AM的解析式;(3)求经过A、B、D三点的抛物线的解析式;(4)在抛物线上是否存在点P,使S△PAM=?若存在,求出P点坐标;若不存在,请说明理由.考点:几何变换综合题.菁优网版权所有专题:综合题.分析:(1)作BP⊥AD于P,BQ⊥MC于Q,如图1,根据旋转的性质得AB=AO=5,BE=OC=AD,∠ABE=90°,利用等角的余角相等得∠ABP=∠MBQ,可证明Rt△ABP∽Rt△MBQ得到==,设BQ=PD=x,AP=y,则AD=x+y,所以BM=x+y﹣2,利用比例性质得到PB•MQ=xy,而PB﹣MQ=DQ﹣MQ=DM=1,利用完全平方公式和勾股定理得到52﹣y2﹣2xy+(x+y﹣2)2﹣x2=1,解得x+y=7,则BM=5,BE=BM+ME=7,所以AD=7;(2)由AB=BM可判断Rt△ABP≌Rt△MBQ,则BQ=PD=7﹣AP,MQ=AP,利用勾股定理得到(7﹣MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,则BQ=4,根据三角形面积公式和梯形面积公式,利用S阴影部分=S梯形ABQD﹣S△BQM进行计算即可;然后利用待定系数法求直线AM的解析式;(3)先确定B(3,1),然后利用待定系数法求抛物线的解析式;(4)当点P在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2设P(x,x2﹣x+5),则K(x,﹣x+5),则KP=﹣x2+x,根据三角形面积公式得到•(﹣x2+x)•7=,解得x1=3,x2=,于是得到此时P点坐标为(3,1)、(,);再求出过点(3,1)与(,)的直线l的解析式为y=﹣x+,则可得到直线l与y轴的交点A′的坐标为(0,),所以AA′=,然后把直线AM向上平移个单位得到l′,直线l′与抛物线的交点即为P点,由于A″(0,),则直线l′的解析式为y=﹣x+,再通过解方程组得P点坐标.解答:解:(1)作BP⊥AD于P,BQ⊥MC于Q,如图1,∵矩形AOCD绕顶点A(0,5)逆时针方向旋转得到矩形ABEF,∴AB=AO=5,BE=OC=AD,∠ABE=90°,∵∠PBQ=90°,∴∠ABP=∠MBQ,∴Rt△ABP∽Rt△MBQ,∴==,设BQ=PD=x,AP=y,则AD=x+y,BM=x+y﹣2,∴==,∴PB•MQ=xy,∵PB﹣MQ=DQ﹣MQ=DM=1,∴(PB﹣MQ)2=1,即PB2﹣2PB•MQ+MQ2=1,∴52﹣y2﹣2xy+(x+y﹣2)2﹣x2=1,解得x+y=7,∴BM=5,∴BE=BM+ME=5+2=7,∴AD=7;(2)∵AB=BM,∴Rt△ABP≌Rt△MBQ,∴BQ=PD=7﹣AP,MQ=AP,∵BQ2+MQ2=BM2,∴(7﹣MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,∴BQ=7﹣3=4,∴S阴影部分=S梯形ABQD﹣S△BQM=×(4+7)×4﹣×4×3=16;设直线AM的解析式为y=kx+b,把A(0,5),M(7,4)代入得,解得,∴直线AM的解析式为y=﹣x+5;(3)设经过A、B、D三点的抛物线的解析式为y=ax2+bx+c,∵AP=MQ=3,BP=DQ=4,∴B(3,1),而A(0,5),D(7,5),∴,解得,∴经过A、B、D三点的抛物线的解析式为y=x2﹣x+5;(4)存在.当点P在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2,设P(x,x2﹣x+5),则K(x,﹣x+5),∴KP=﹣x+5﹣(x2﹣x+5)=﹣x2+x,∵S△PAM=,∴•(﹣x2+x)•7=,整理得7x2﹣46x+75,解得x1=3,x2=,此时P点坐标为(3,1)、(,),求出过点(3,1)与(,)的直线l的解析式为y=﹣x+,则直线l与y轴的交点A′的坐标为(0,),∴AA′=5﹣=,把直线AM向上平移个单位得到l′,则A″(0,),则直线l′的解析式为y=﹣x+,解方程组得或,此时P点坐标为(,)或(,),综上所述,点P的坐标为(3,1)、(,)、(,)、(,).点评:本题考查了几何变换综合题:熟练掌握旋转的性质、矩形的性质和三角形全等于相似的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会进行代数式的变形.64.(12分)(2015•鄂州)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.考点:二次函数综合题.菁优网版权所有分析:(1)①先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;②设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值;(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=m2﹣2m,然后利用三角形的面积公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标;(3)首先可证明△ABC∽△ACO∽△CBO,然后分以下几种情况分类讨论即可:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;④当点M在第四象限时,解题时,需要注意相似三角形的对应关系.解答:解:(1)①y=当x=0时,y=2,当y=0时,x=﹣4,∴C(0,2),A(﹣4,0),由抛物线的对称性可知:点A与点B关于x=﹣对称,∴点B的坐标为1,0).②∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x﹣1),又∵抛物线过点C(0,2),∴2=﹣4a∴a=∴y=x2x+2.(2)设P(m,m2m+2).过点P作PQ⊥x轴交AC于点Q,∴Q(m,m+2),∴PQ=m2m+2﹣(m+2)=m2﹣2m,∵S△PAC=×PQ×4,=2PQ=﹣m2﹣4m=﹣(m+2)2+4,∴当m=﹣2时,△PAC的面积有最大值是4,此时P(﹣2,3).(3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC

1 / 75
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功