2013年中考模拟试卷一、选择题1.下面的数中,与-3的和为0的是………………………….()A.3B.-3C.31D.312.下面的几何体中,主(正)视图为三角形的是()A.B.C.D.3.计算32)2(x的结果是()A.52xB.68xC.62xD.58x4.下面的多项式中,能因式分解的是()A.nm2B.12mmC.nm2D.122mm5.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元6.化简xxxx112的结果是()A.x+1B.x-1C.—xD.x7.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.22aB.32aC.42aD.52a8.给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()A.61B.31C.21D.329.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为A.2B.23C.4D.4310.化简22mnmnmn的结果是A.mnB.mnC.nmD.mn11.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为A.1120B.400C.280D.8012.一次函数y=(k-2)x+3的图象如图所示,则k的取值范围是A.k>2B.k<2C.k>3D.k<313.如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确.....的是A.AC=BDB.∠OBC=∠OCBC.S△AOB=S△DOCD.∠BCD=∠BDC14.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图像大致是()15.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.54C.10或54D.10或172二、填空题16.方程220xx的解为________________.17.2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.18.甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为362甲S,252乙S,162丙S,则数据波动最小的一组是___________________.BADCO第11题图xyO第10题图19.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______________°.20.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数6yx(x>0)的图象上,则点C的坐标为____________.21.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4②S2+S4=S1+S3③若S3=2S1,则S4=2S2④若S1=S2,则P点在矩形的对角线上其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).三、22.(1)计算:)2()1)(3(aaaaxyOABCD第20题图ABCDM第23题图2(2).解方程:1222xxx23、(1).如图,在△ABC中,∠A=30°,∠B=45°,AC=32,求AB的长,解:(2)如图2,点M为正方形ABCD对角线BD上一点,分别连接AM、CM.求证:AM=CM.45°30°CBA第19题图24.飞飞和欣欣两位同学到某文具专卖店购买文具,恰好赶上“店庆购物送礼”活动.该文具店设置了A、B、C、D四种型号的钢笔作为赠品,购物者可随机抽取一支,抽到每种型号钢笔的可能性相同.(1)飞飞购物后,获赠A型号钢笔的概率是多少?(2)飞飞和欣欣购物后,两人获赠的钢笔型号相同的概率是多少?25、甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销。(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=购买商品的总金额优惠金额),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由。26.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,△BDG与四边形ACDG的周长相等,设BC=a、AC=b、AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△BDG与△DFG相似,求证:BG⊥CG.ABCDEFGABCDEFG27、.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围。第23题图AOxy边界球网18962ABCDEM第28题图NP28.(本小题满分9分)如图,点C为线段AB上任意一点(不与A、B两点重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC与△DMP的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.