北京初中数学周老师的博客:年恩施州初中学业考试数学考试大纲Ⅰ.考试性质初中毕业数学学业考试是依据《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)进行的义务教育阶段数学学科的终结性考试。考试要有利于全面贯彻国家教育方针,推进素质教育;有利于体现九年义务教育的性质,全面提高教育质量;有利于数学课程改革,培养学生的创新精神和实践能力;有利于减轻学生过重的课业负担,促进学生生动、活泼、主动地学习。数学学业考试命题应当根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,面向全体学生,使具有不同认知特点、不同数学发展程度的学生都能正常表现自己的学习状况。学业考试要求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。Ⅱ.命题依据教育部制订的《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)及本考试大纲.《2013年恩施州中考工作实施方案》和我州初中数学教学实际,力求反映考生真实的学业水平,发挥评价对初中教学的正确导向作用,以促进全州初中数学教学质量的全面提高。北京初中数学周老师的博客:Ⅲ.命题原则⒈体现数学课程标准的评价理念,有利于促进数学教学,全面落实《数学课程标准》所设立的课程目标;有利于改变学生的数学学习方式,提高学习效率;有利于高中阶段学校综合有效评价学生数学学习状况。⒉重视对学生学习数学“四基”的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价.⒊体现义务教育的性质,命题应面向全体学生,关注每个学生的发展。⒋试题的考查内容、素材选取、试卷形式对每个学生而言要体现其公平性.制定科学合理的参考答案与评分标准,尊重不同的解答方式和表现形式。⒌试题背景具有现实性.试题背景应来自学生所能理解的生活现实,符合学生所具有的数学现实和其他学科现实。⒍试卷的有效性.关注学生学习数学结果与过程的考查,加强对学生思维水平与思维特征的考查。中考试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致.试题的求解思考过程力求体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等。北京初中数学周老师的博客:Ⅳ.考试内容与目标要求考试内容与要求一、考试内容数学学业考试应以《数学课程标准》所规定的四大学习领域,即数与代数、空间与图形、统计与概率、实践与综合应用的内容为依据,主要考查基础知识、基本技能、基本体验和基本思想。1.关注基础知识与基本技能。了解数的意义,理解数和代数运算的算理和算法,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题。能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能够对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性。正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测;了解概率的含义,能够借助概率模型或通过设计活动解释事件发生的概率。2.关注“数学活动过程”包括数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究的意识、能力和信心等。也包括能否通过观察、实验、归纳、类比等活动获得数学猜想,并寻北京初中数学周老师的博客:求证明猜想的合理性;能否使用恰当的语言有条理地表达数学的思考过程。3.关注“数学思考”学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况,其内容主要包括:能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象地表达问题、借助直观进行思考与推理;能意识到做一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论做合理的质疑;能正确地认识生活中的一些确定或不确定现象;能从事基本的观察、分析、实验、猜想和推理的活动,并能够有条理地、清晰地阐述自已的观点。4.关注“解决问题能力”能从数学角度提出问题、理解问题、并综合运用数学知识解决问题;具有一定的解决问题的基本策略;能合乎逻辑地与他人交流;具有初步的反思意识。5.关注“对数学的基本认识”形成对数学内容统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);深化对数学与现实或其他学科知识之间联系的认识等等。北京初中数学周老师的博客:二、考试要求1.《数学课程标准》规定了初中数学的教学要求(1)使学生获得适用未来社会生活和进一步发展所必需的重要数学知识,以及基本的数学思想方法和必要的应用技能;(2)初步学会运用数学的思维方式观察、分析现实社会,解决日常生活和其他学科学习中的问题,增强应用数学的意识;(3)体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;(4)具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。2.《数学课程标准》阐述的教学要求具体分以下几个层次知识技能要求:(1)了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。(2)理解:能描述对象特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。(3)掌握:能在理解的基础上,把对象运用到新的情境中去。(4)运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。过程性要求:(5)经历(感受):在特定的数学活动中,获得一些初步的感受。北京初中数学周老师的博客:(6)体验(体会):参与特定的数学活动,在具体情境中认识对象的特征,获得一些经验。(7)探索:主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系。这些要求从不同角度表明了数学学业考试要求的层次性。三、对《数学课程标准》中,数与代数、空间与图形、统计与概率、课题学习四个领域的具体考试内容与要求分述如下:数与代数(一)数与式⒈有理数考试内容:有理数,数轴,相反数,数的绝对值,有理数的加、减、乘、除、乘方,加法运算律,乘法运算律,简单的混合运算.考试要求:(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方的运算法则、运算律、运算顺序以及简单的有理数的混合运算(以三步为主).北京初中数学周老师的博客:(4)能用有理数的运算律简化有关运算,能用有理数的运算解决简单的问题⒉实数考试内容:无理数,实数,平方根,算术平方根,立方根,近似数和有效数字,二次根式,二次根式的加、减、乘、除运算法则,简单的实数四则运算.考试要求:(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用科学计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念,会按要求求一个数的近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.(6)了解二次根式的概念及其加、减、乘、除运算法则,会用运算法则进行有关实数的简单四则运算(不要求分母有理化).北京初中数学周老师的博客:⒊代数式考试内容:代数式,代数式的值,合并同类项,去括号.考试要求:(1)了解用字母表示数的意义.(2)能分析简单问题的数量关系,并用代数式表示.(3)能解析一些简单代数式的实际背景或几何意义.(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.(5)掌握合并同类项的方法和去括号的法则,能进行同类项的合并.⒋整式与分式考试内容:整式,整式加减,整式乘除,整数指数幂,科学记数法.乘法公式:.因式分解,提公因式法,公式法.分式、分式的基本性质,约分,通分,分式的加、减、乘、除运算.考试要求:(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示).北京初中数学周老师的博客:(2)了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘).(3)会推导乘法公式:了解公式的几何背景,并能进行简单计算.(4)会用提公因式法和公式法(直接用公式不超过两次)进行因式分解(指数是正整数).(5)了解分式的概念,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.(二)方程与不等式⒈方程与方程组考试内容:方程和方程的解,一元一次方程及其解法,一元二次方程及其解法,二元一次方程组及其解法,可化为一元一次方程的分式方程(方程中的分式不超过两个).考试要求:(1)能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型.(2)会用观察、画图或计算器等手段估计方程的解.(3)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个).(4)理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程.(5)能根据具体问题的实际意义,检验方程的解的合理性北京初中数学周老师的博客:⒉不等式与不等式组考试内容:不等式,不等式的基本性质,不等式的解集,一元一次不等式及其解法,一元一次不等式组及其解法.考试要求:(1)能够根据具体问题中的大小关系了解不等式的意义,掌握不等式的基本性质.(2)会解简单的一元一次不等式,并能在数轴上表示出解集.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.(3)能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题.(三)函数⒈函数考试内容:平面直角坐标系,常量,变量,函数及其表示法.考试要求:(1)会从具体问题中寻找数量关系和变化规律.(2)了解常量、变量、函数的意义,了解函数的三种表示方法,会用描点法画出函数的图象,能举出函数的实际例子.(3)能结合图象对简单实际问题中的函数关系进行分析.(4)能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值.北京初中数学周老师的博客:(5)能用适当的函数表示法刻画某些实际问题中变量之间的关系.(6)结合对函数关系的分析,尝试对变量的变化规律进行初步预测.⒉一次函数考试内容:一次函数,一次函数的图象和性质,二元一次方程组的近似解.考试要求:(1)理解正比例函数、一次函数的意义,会根据已知条件确定一次函数表达式.(2)会画一次函数的图象,根据一次函数的图象和解析式,理解其性质(k0或k0时图象的变化情况).(3