2013年高考数学总复习9-4线面、面面平行的判定与性质但因为测试新人教B版1.(文)(2011·泰安模拟)设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β[答案]D[解析]A选项不正确,n还有可能在平面α内,B选项不正确,平面α还有可能与平面β相交,C选项不正确,n也有可能在平面β内,选项D正确.(理)(2011·邯郸期末)设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是()A.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥nD.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β[答案]D[解析]选项A中的直线m,n可能不相交;选项B中直线n可能在平面α内;选项C中直线m,n的位置可能是平行、相交或异面.2.(文)(2011·宁波模拟)已知直线l、m,平面α、β,则下列命题中的假命题是()A.若α∥β,l⊂α,则l∥βB.若α∥β,l⊥α,则l⊥βC.若l∥α,m⊂α,则l∥mD.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β[答案]C[解析]对于选项C,直线l与m可能构成异面直线,故选C.(理)(2010·北京顺义一中月考)已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案]C[解析]如下图在正方体ABCD-A1B1C1D1中,取平面ABD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.3.(2011·北京海淀期中)已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误..的是()A.若m∥β,则m∥lB.若m∥l,则m∥βC.若m⊥β,则m⊥lD.若m⊥l,则m⊥β[答案]D[解析]A符合直线与平面平行的性质定理;B符合直线与平面平行的判定定理;C符合直线与平面垂直的性质;对于D,只有α⊥β时,才能成立.4.(文)(2011·浙江省温州市高三适应性测试)已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A.α∥β,m⊂α,n⊂β⇒m∥nB.l⊥β,α⊥β⇒l∥αC.m⊥α,m⊥n⇒n∥αD.α∥β,l⊥α⇒l⊥β[答案]D[解析]对于选项A,m,n平行或异面;对于选项B,可能出现l⊂α这种情形;对于选项C,可能出现n⊂α这种情形.故选D.(理)(2011·河南省郑州市模拟)设α、β是两个不同的平面,a、b是两条不同的直线,给出下列四个命题,其中真命题是()A.若a∥α,b∥α,则a∥bB.若a∥α,b∥β,a∥b,则α∥βC.若a⊥α,b⊥β,a∥b,则α∥βD.若a、b在平面α内的射影互相垂直,则a⊥b[答案]C[解析]∵a⊥α,a∥b,∴b⊥α.又b⊥β,∴α∥β.选项C正确,对于A选项可能出现两直线相交或异面的情况,选项B中可能出现两平面相交的情况,选项D可能出现a与b异面的情况.5.(2011·广东揭阳模拟)若a不平行于平面α,且a⊄α,则下列结论成立的是()A.α内的所有直线与a异面B.α内与a平行的直线不存在C.α内存在唯一的直线与a平行D.α内的直线与a都相交[答案]B[解析]由条件知a与α相交,故在平面α内的直线与a相交或异面,不存在与a平行的直线.6.(文)(2010·福建福州市)对于平面α和共面的直线m,n,下列命题是真命题的是()A.若m,n与α所成的角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案]D[解析]正三棱锥P-ABC的侧棱PA、PB与底面成角相等,但PA与PB相交应排除A;若m∥α,n∥α,则m与n平行、相交或异面,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.(理)(2011·苏州模拟)下列命题中,是假命题的是()A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a⊂α,过β内的一点B有唯一的一条直线b,使b∥aC.α∥β,γ∥δ,α、β与γ、δ的交线分别为a、b和c、d,则a∥b∥c∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件[答案]D[解析]三角形的任意两边必相交,故三角形所在的平面与这个平面平行,从而第三边也与这个平面平行,∴A真;假设在β内经过B点有两条直线b、c都与a平行,则b∥c,与b、c都过B点矛盾,故B真;∵γ∥δ,α∩γ=a,α∩δ=b,∴a∥b,同理c∥d;又α∥β,γ∩α=a,γ∩β=c,∴a∥c,∴a∥b∥c∥d,故C真;正方体ABCD-A1B1C1D1中,AC与平面AA1D1D和平面CC1D1D所成角相等,但平面AA1D1D∩平面CC1D1D=DD1,故D假.7.(2011·浙江五校联考)已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:①若m∥α,n∥α,m∥β,n∥β,则α∥β;②若α⊥γ,β⊥γ,α∩β=m,n⊂γ,则m⊥n;③若m⊥α,α⊥β,m∥n,则n∥β;④若n∥α,n∥β,α∩β=m,那么m∥n.其中正确命题的序号是________.[答案]②④[解析]命题①中,直线m,n不一定相交,即命题①不正确;命题②中,垂直于同一个平面的两个平面的位置关系可以平行或相交,若相交,其交线必与第三个平面垂直,∴m⊥γ,又n⊂γ,∴m⊥n,即命题②正确;若m∥n,m⊥α,则n⊥α,又α⊥β,则n∥β或n⊂β,即命题③不正确;由线面平行的判定与性质定理可知命题④正确.则正确命题的序号为②④.8.(2011·福建文,15)如下图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.[答案]2[解析]∵EF∥平面AB1C,平面ABCD经过直线EF与平面AB1C相交于AC,∴EF∥AC,∵E为AD的中点,∴F为CD的中点,∴EF=12AC=12×22=2.9.(2011·郑州一检)已知两条不重合的直线m、n,两个不重合的平面α、β,有下列命题:①若m∥n,n⊂α,则m∥α;②若n⊥α,m⊥β,且n∥m,则α∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确命题的序号是________.[答案]②④[解析]对于①,直线m可能位于平面α内,此时不能得出m∥α,因此①不正确;对于②,由n⊥α,m∥n,得m⊥α,又m⊥β,所以α∥β,因此②正确;对于③,直线m,n可能是两条平行直线,此时不一定能得出α∥β,因此③不正确;对于④,由“如果两个平面相互垂直,则在一个平面内垂直于它们交线的直线必垂直于另一个平面”可知,④正确.综上所述,其中正确命题的序号是②④.10.(2011·广东揭阳一模)如下图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F-ABCD的体积.[解析](1)证法1:∵EF∥AD,AD∥BC,∴EF∥BC.又EF=AD=BC,∴四边形EFBC是平行四边形,∴H为FC的中点.又∵G是FD的中点,∴GH∥CD.∵GH⊄平面CDE,CD⊂平面CDE,∴GH∥平面CDE.证法2:连接EA,∵ADEF是正方形,∴G是AE的中点.∴在△EAB中,GH∥AB.又∵AB∥CD,∴GH∥CD.∵HG⊄平面CDE,CD⊂平面CDE,∴GH∥平面CDE.(2)∵平面ADEF⊥平面ABCD,交线为AD,且FA⊥AD,∴FA⊥平面ABCD.∵AD=BC=6,∴FA=AD=6.又∵CD=2,DB=42,CD2+DB2=BC2,∴BD⊥CD.∵S▱ABCD=CD·BD=82,∴VF-ABCD=13S▱ABCD·FA=13×82×6=162.11.(2011·广东省广州市质检)如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条[答案]D[解析]由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的直线有无数条,且它们都不在平面D1EF内,由线面平行的判定定理知它们都与平面D1EF平行,故选D.12.(文)(2011·北京模拟)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为()A.3B.2C.1D.0[答案]C[解析]①设α∩β=a,当l,m都与a相交且交点不重合时,满足①的条件,故①假;②中分别在两个平行平面内的两条直线可能平行,也可能异面,故②假;由三棱柱知③真;故选C.(理)如下图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心.从K、H、G、B′中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为()A.KB.HC.GD.B′[答案]C[解析]假如平面PEF与侧棱BB′平行则和三条侧棱都平行,不满足题意,而FK∥BB′,排除A;假如P为B′点,则平面PEF即平面A′B′C,此平面只与一条侧棱AB平行,排除D.若P为H点,则HF为△BA′C′的中位线,∴HF∥A′C′;EF为△ABC′的中位线,∴EF∥AB,HE为△AB′C′的中位线,∴HE∥B′C′,显然不合题意,排除B.[点评]此题中,∵EF是△ABC′的中位线,∴EF∥AB∥A′B′,故点P只要使得平面PEF与其它各棱均不平行即可,故选G点.13.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是______(写出所有符合要求的图形序号).[答案]①③[解析]如图①,∵MN∥AD,NP∥AC,∴平面MNP∥平面ADBC,∴AB∥平面MNP.如图②,假设AB∥平面MNP,设BD∩MP=Q,则NQ为平面ABD与平面MNP的交线,∴AB∥NQ,∵N为AD的中点,∴Q为BD的中点,但由M、P分别为棱的中点知,Q为BD的14分点,矛盾,∴AB∥\平面MNP.如图③,∵BD綊AC,∴四边形ABDC为平行四边形,∴AB∥CD,又∵MP为棱的中点,∴MP∥CD,∴AB∥MP,从而可得AB∥平面MNP.如图④,假设AB∥平面MNP,并设直线AC∩平面MNP=D,则有AB∥MD,∵M为BC中点,∴D为AC中点,这样平面MND∥平面AB,显然与题设条件不符,∴AB∥\平面MNP.14.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?[解析]当Q为CC1的中点时,平面D1BQ∥平面PAO.∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.连结DB.∵P、O分别为DD1、DB的中点,∴D1B∥PO.又D1B⊄平面PAO,QB⊄平面PAO,∴D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,∴平面D1BQ∥平面PAO.15.(文)(2010·安徽江南十校联考)如下图,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D为AB的中点,且CD⊥DA1.(1)求证:BB1⊥平面