第1页(共21页)2015年贵州省黔西南州中考数学试卷一、选择题(每小题4分,共40分)1.(4分)(2015•黔西南州)下列各数是无理数的是()A.B.C.πD.﹣12.(4分)(2015•黔西南州)分式有意义,则x的取值范围是()A.x>1B.x≠1C.x<1D.一切实数3.(4分)(2015•黔西南州)如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于()A.10B.C.6D.54.(4分)(2015•黔西南州)已知一组数据:﹣3,6,2,﹣1,0,4,则这组数据的中位数是()A.1B.C.0D.25.(4分)(2015•黔西南州)已知△ABC∽△A′B′C′且,则S△ABC:S△A'B'C′为()A.1:2B.2:1C.1:4D.4:16.(4分)(2015•黔西南州)如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150°B.130°C.155°D.135°7.(4分)(2015•黔西南州)某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为()第2页(共21页)A.x(x﹣11)=180B.2x+2(x﹣11)=180C.x(x+11)=180D.2x+2(x+11)=1808.(4分)(2015•黔西南州)下面几个几何体,主视图是圆的是()A.B.C.D.9.(4分)(2015•黔西南州)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.10.(4分)(2015•黔西南州)在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A、B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM的延长线与x轴交于点N(n,0),如图3,当m=时,n的值为()A.4﹣2B.2﹣4C.﹣D.二、填空题(每小题3分,共30分)11.(3分)(2015•黔西南州)a2•a3=.12.(3分)(2015•黔西南州)42500000用科学记数法表示为.第3页(共21页)13.(3分)(2015•黔西南州)如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.14.(3分)(2015•黔西南州)如图,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B=.15.(3分)(2015•黔西南州)分解因式:4x2+8x+4=.16.(3分)(2015•黔西南州)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.17.(3分)(2015•黔西南州)已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是.18.(3分)(2015•黔西南州)已知x=,则x2+x+1=.19.(3分)(2015•黔西南州)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.第4页(共21页)20.(3分)(2015•黔西南州)已知A32=3×2=6,A53=5×4×3=60,A52=5×4×3×2=120,A63=6×5×4×3=360,依此规律A74=.三、(本题共12分)21.(12分)(2015•黔西南州)(1)计算:(﹣2014)0+|﹣tan45°|﹣()﹣1+(2)解方程:=3.四、(本题共12分)22.(12分)(2015•黔西南州)如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.五、(本题共14分)23.(14分)(2015•黔西南州)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.第5页(共21页)六、(本题共14分)24.(14分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?七、阅读材料题(本题共12分)25.(12分)(2015•黔西南州)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.八、(本题共16分)26.(16分)(2015•黔西南州)如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.(1)求A、A′、C三点的坐标;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.第6页(共21页)第7页(共21页)2015年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)(2015•黔西南州)下列各数是无理数的是()A.B.C.πD.﹣1考点:无理数.菁优网版权所有分析:根据无理数的三种形式求解.解答:解:=2,则无理数为π.故选C.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.(4分)(2015•黔西南州)分式有意义,则x的取值范围是()A.x>1B.x≠1C.x<1D.一切实数考点:分式有意义的条件.菁优网版权所有分析:分母为零,分式无意义;分母不为零,分式有意义.解答:解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.3.(4分)(2015•黔西南州)如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于()A.10B.C.6D.5考点:菱形的性质.菁优网版权所有第8页(共21页)分析:根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.解答:解:∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,∵AC=8,BD=6,∴OA=4,OB=3,∴AB==5,即菱形ABCD的边长是5.故选:D.点评:本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.4.(4分)(2015•黔西南州)已知一组数据:﹣3,6,2,﹣1,0,4,则这组数据的中位数是()A.1B.C.0D.2考点:中位数.菁优网版权所有分析:先把数据按从小到大排列:﹣3,﹣1,0,2,4,6,然后根据中位数的定义求出中间两个数0和2的平均数即可.解答:解:把数据按从小到大排列:﹣3,﹣1,0,2,4,6,共有6个数,最中间的两个数为0和2,它们的平均数为(0+2)÷2=1,即这组数据的中位数是1.故选A.点评:本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数.5.(4分)(2015•黔西南州)已知△ABC∽△A′B′C′且,则S△ABC:S△A'B'C′为()A.1:2B.2:1C.1:4D.4:1考点:相似三角形的性质.菁优网版权所有分析:根据相似三角形的面积比等于相似比的平方求出即可.解答:解:∵△ABC∽△A′B′C′,,∴=()2=,故选C.点评:本题考查了相似三角形的性质的应用,能运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.第9页(共21页)6.(4分)(2015•黔西南州)如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150°B.130°C.155°D.135°考点:切线的性质.菁优网版权所有分析:由PA与PB为圆的两条切线,利用切线性质得到PA与OA垂直,PB与OB垂直,在四边形APBO中,利用四边形的内角和定理即可求出∠AOB的度数.解答:解:∵PA、PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P=50°,∴∠AOB=130°.故选B.点评:此题考查了切线的性质,以及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.7.(4分)(2015•黔西南州)某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为()A.x(x﹣11)=180B.2x+2(x﹣11)=180C.x(x+11)=180D.2x+2(x+11)=180考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:增长率问题.分析:根据题意设出未知数,利用矩形的面积公式列出方程即可.解答:解:设宽为x米,则长为(x+11)米,根据题意得:x(x+11)=180,故选C.点评:本题考查了一元二次方程的应用,解题的关键是根据矩形的面积公式列出方程.8.(4分)(2015•黔西南州)下面几个几何体,主视图是圆的是()A.B.C.D.考点:简单几何体的三视图.菁优网版权所有分析:分别判断A,B,C,D的主视图,即可解答.解答:解:A、主视图为正方形,故错误;B、主视图为圆,正确;第10页(共21页)C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.点评:本题考查了几何体的三视图,解决本题的关键是得出各个几何体的主视图.9.(4分)(2015•黔西南州)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A.B.C.D.考点:动点问题的函数图象;二次函数的图象.菁优网版权所有专题:压轴题;动点型.分析:解决本题的关键是正确确定y与x之间的函数解析式.解答:解:∵运动时间x(s),则CP=x,CO=2x;∴S△CPO=CP•CO=x•2x=x2.∴则△CPO的面积y(cm2)与运动时间x(s)之间的函数关系式是:y=x2(0≤x≤3),故选:C.点评:解决本题的关键是读懂图意,确定函数关系式.10.(4分)(2015•黔西南州)在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A、B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,