2013绥化中考数学试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

黑龙江省绥化市2013年中考数学试卷一、填空题(共11小题,每小题3分,满分33分)1.(3分)(2013•绥化)按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3.考点:代数式求值.专题:图表型.分析:根据x的值是奇数,代入下边的关系式进行计算即可得解.解答:解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.点评:本题考查了代数式求值,准确选择关系式是解题的关键.2.(3分)(2013•绥化)函数y=中自变量x的取值范围是x>3.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解.解答:解:依题意,得x﹣3>0,解得x>3.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数.3.(3分)(2013•绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件AE=CB,使得△EAB≌△BCD.考点:全等三角形的判定.专题:开放型.分析:可以根据全等三角形的不同的判定方法添加不同的条件.解答:解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAB”,可添加∠EBD=90°,若添加∠E=∠DBC,看利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.点评:本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.4.(3分)(2013•绥化)在九张质地都相同的卡片上分别写有数字﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.考点:概率公式.3718684分析:让绝对值不大于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.解答:解:∵数的总个数有9个,绝对值不大于2的数有﹣2,﹣1,0,1,2共5个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是.故答案为.点评:本题考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.得到绝对值不大于2的数的个数是解决本题的易错点.5.(3分)(2013•绥化)计算:=.考点:分式的加减法.分析:首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.注意运算结果需化为最简.解答:解:=﹣===.故答案为:.点评:此题考查了分式的加减运算法则.此题比较简单,注意运算要细心,注意运算结果需化为最简.6.(3分)(2013•绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由俯视图易得最底层有3个立方体,由主视图可得第二层左边第一列有1个正方体或2个正方体,那么共有4或5个正方体组成.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7.(3分)(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.考点:垂径定理;勾股定理.专题:计算题.分析:连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.解答:解:连接OA,由AB垂直平分OC,得到OD=OC=1,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=2.故答案为:2.点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键.8.(3分)(2013•绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.考点:规律型:图形的变化类.分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.解答:解:∵1在射线OA上,2在射线OB上,3在射线OC上,4在射线OD上,5在射线OE上,6在射线OF上,7在射线OA上,…每六个一循环,2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样,∴所描的第2013个点在射线OC上.故答案为:OC.点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.9.(3分)(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有2种租车方案.考点:二元一次方程的应用.3718684分析:设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据车座位数等于学生的人数列出二元一次方程,再根据x、y都是正整数求解即可.解答:解:设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据题意得,8x+4y=20,整理得,2x+y=5,∵x、y都是正整数,∴x=1时,y=3,x=2时,y=1,x=3时,y=﹣1(不符合题意,舍去),所以,共有2种租车方案.故答案为:2.点评:本题考查了二元一次方程的应用,解题的关键在于车辆数是正整数.10.(3分)(2013•绥化)若关于x的方程=+1无解,则a的值是2.考点:分式方程的解.分析:把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.解答:解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,把x=2代入方程得:2a=4+2﹣2,解得:a=2.故答案是:2.点评:首先根据题意写出a的新方程,然后解出a的值.11.(3分)(2013•绥化)直角三角形两直角边长是3cm和4cm,以该三角形的边所在直线为轴旋转一周所得到的几何体的表面积是24π,36π,πcm2.(结果保留π)考点:圆锥的计算;点、线、面、体.专题:分类讨论.分析:先利用勾股定理进行出斜边=5(cm),然后分类讨论:当以3cm的边所在直线为轴旋转一周时;当以4cm的边所在直线为轴旋转一周时;当以5cm的边所在直线为轴旋转一周时,再利用圆锥的侧面展开图为扇形和扇形的面积公式计算即可.解答:解:三角形斜边==5(cm),当以3cm的边所在直线为轴旋转一周时,其所得到的几何体的表面积=π•42+•5•2π•4=36π(cm2);当以4cm的边所在直线为轴旋转一周时,其所得到的几何体的表面积=π•32+•5•2π•3=24π(cm2);当以5cm的边所在直线为轴旋转一周时,其所得到的几何体为共一个底面的两圆锥,其底面圆的面积=cm,所以此几何体的表面积=•2π••3+•2π••4=π(cm2).故答案为24π,36π,π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.二、选择题(共9小题,每小题3分,满分27分)12.(3分)(2013•绥化)下列计算正确的是()A.a3•a3=2a3B.a2+a2=2a4C.a8÷a4=a2D.(﹣2a2)3=﹣8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.3718684分析:利用同底数的幂的乘法、除法以及合并同类项的法则即可求解.解答:解:A、a3•a3=a6,选项错误;B、a2+a2=2a2,选项错误;C、a8÷a4=a4,选项错误;D、正确.故选D.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.13.(3分)(2013•绥化)下列几何图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.矩形C.平行四边形D.等腰梯形考点:中心对称图形;轴对称图形.3718684分析:根据轴对称图形与中心对称图形的概念结合各图形的特点求解.解答:解:A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.14.(3分)(2013•绥化)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为()A.1B.C.D.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半求出H是AO的中点,再根据平行四边形的对角线互相平分可得AO=CO,然后求出CH=3AH,再求解即可.解答:解:∵点E,F分别是边AD,AB的中点,∴AH=HO,∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,∴CH=3AH,∴=.故选C.点评:本题考查了平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质是解题的关键.15.(3分)(2013•绥化)对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小考点:反比例函数的性质.分析:根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.解答:解:A、∵反比例函数y=,∴xy=3,故图象经过点(1,3),故此选项错误;B、∵k>0,∴图象在第一、三象限,故此选项错误;C、∵k>0,∴x>0时,y随x的增大而减小,故此选项错误;D、∵k>0,∴x<0时,y随x增大而减小,故此选项正确.故选:D.点评:此题主要考查了反比例函数的性质,根据解析式确定函数的性质是解题关键.16.(3分)(2013•绥化)在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35B.50,35C.50,50D.15,50考点:众数;中位数.分析:根据众数、中位数的定义,结合表格数据进行判断即可.解答:解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,第23名学生捐款50元,故中位数为50;故选C.点评:本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.17.(3分)(2013•绥化)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程S之间的函数关系用图象表示大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,当P点在AB上,当P点在BC上,当P点在CD上,点P在AD上即可得出图象.解答:解:∵长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,∴P点在AB上,此时纵坐标越来越小,最小值是1,P点在BC上,此时纵坐标为定值1.当P点在CD上,此时纵坐标越来越大,最大值是2,P点在AD上,此时纵坐标为定值2.故选D.点评:此题主要考查了动点问题的函数图象问题,解决问题的关键是分解函数得出

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功