广西贺州市2013年中考数学试卷一、选择题(共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2013•贺州)﹣3的相反数是()A.﹣B.C.3D.3考点:相反数分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是﹣(﹣3)=3.故选D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2013•贺州)下面各图中∠1和∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义对各选项分析判断后利用排除法求解.解答:解:A、∠1和∠2不是对顶角,故本选项错误;B、∠1和∠2是对顶角,故本选项正确;C、∠1和∠2不是对顶角,故本选项错误;D、∠1和∠2不是对顶角,是邻补角,故本选项错误.故选B.点评:本题考查了对顶角、邻补角,熟记概念并准确识图是解题的关键.3.(3分)(2013•贺州)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间考点:估算无理数的大小.专题:计算题.分析:利用”夹逼法“得出的范围,继而也可得出的范围.解答:解:∵2=<=3,∴3<<4,故选B.点评:此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.4.(3分)(2013•贺州)下列图形是中心对称图形而不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是中心对称图形,不是轴对称图形;故本选项正确;B、是中心对称图形,也是轴对称图形;故本选项错误;C、是中心对称图形,也是轴对称图形;故本选项错误;D、不是中心对称图形,是轴对称图形;故本选项错误;故选A.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)(2013•贺州)为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A.500名B.600名C.700名D.800名考点:用样本估计总体;扇形统计图.分析:根据扇形统计图求出该校喜爱动画节目的学生所占的百分比,再乘以总人数即可.解答:解:根据扇形统计图可得:该校喜爱动画节目的学生占1﹣35%﹣5%﹣10%﹣20%=30%,则该校喜爱动画节目的学生约有2000×30%=600(名);故选B.点评:此题考查了用样本估计总体,关键是根据扇形统计图求出该校喜爱动画节目的学生所占的百分比,用样本估计整体让整体×样本的百分比即可.6.(3分)(2013•贺州)下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x4考点:幂的乘方与积的乘方;正数和负数;合并同类项;同底数幂的乘法.专题:计算题.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、x•x2=x1+2=x3≠x2,故本选项错误;B、(xy)2=x2y2≠xy2,故本选项错误;C、(x2)3=x2×3=x6,故本选项正确;D、x2+x2=2x2=x4,故本选项错误.故选C.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.7.(3分)(2013•贺州)如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2cm3B.3cm3C.6cm3D.8cm3考点:由三视图判断几何体.分析:根据三视图我们可以得出这个几何体是个长方体,它的体积应该是1×1×3=3cm3.解答:解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3.故选B.点评:本题考查了由三视图判断几何体及长方体的体积公式,本题要先判断出几何体的形状,然后根据其体积公式进行计算.8.(3分)(2013•贺州)把a3﹣2a2+a分解因式的结果是()A.a2(a﹣2)+aB.a(a2﹣2a)C.a(a+1)(a﹣1)D.a(a﹣1)2考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再根据完全平方公式进行二次分解.解答:解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故选D.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(3分)(2013•贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cmB.6cmC.8cmD.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC,∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.10.(3分)(2013•贺州)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.解答:解:当a>0时,y=ax+1过一、二、三象限,y=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=过二、四象限;故选C.点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.11.(3分)(2013•贺州)直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是()A.25°或155°B.50°或155°C.25°或130°D.50°或130°考点:切线的性质专题:计算题.分析:连结OB,根据切线的性质得OB⊥BA,可求出∠AOB=50°,然后讨论:当点D在优弧BC上时,根据圆周角定理即可得到∠BDC=∠AOB=25°;当点D在劣弧BC上时,即在D′点处,则可根据圆内接四边形的性质求出∠BD′C=180°﹣25°=155°.解答:解:当点D在优弧BC上时,如图,连结OB,∵直线AB与⊙O相切于B点,∴OB⊥BA,∴∠OBA=90°,∵∠A=40°,∴∠AOB=50°,∴∠BDC=∠AOB=25°;当点D在劣弧BC上时,即在D′点处,如图,∵∠BDC+∠BD′C=180°,∴∠BD′C=180°﹣25°=155°,∴∠BDC的度数为25°或155°.故选A.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理以及圆的内接四边形的性质.12.(3分)(2013•贺州)2615个位上的数字是()A.2B.4C.6D.8考点:尾数特征分析:根据21的个位数字是2,22的个位数字是4,23的个位数字是8,24的个位数字是6,…依此类推,找出规律即可得出答案.解答:解:21的个位数字是2,22的个位数字是4,23的个位数字是8,24的个位数字是6,25的个位数字是2,…因为615=4×153+3,所以2615的个位数字与23的个位数字相同,即是8.故选D.点评:此题考查了尾数的特征,解答此题的关键是从21开始,找出其中的规律,每4个数一个循环,利用规律解答.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2013•贺州)函数的自变量x的取值范围是x≤2.考点:函数自变量的取值范围;二次根式有意义的条件.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.解答:解:依题意,得2﹣x≥0,解得x≤2.点评:本题考查的知识点为:二次根式的被开方数是非负数.14.(3分)(2013•贺州)地球距月球表面约为383900千米,那么这个距离用科学记数法应表示为3.84×105千米.(结果保留三个有效数字)考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于383900有6位,所以可以确定n=6﹣1=5.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解答:解:383900=3.839×105≈3.84×105.故答案为:3.84×105.点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.15.(3分)(2013•贺州)调查市场上某种食品的色素含量是否符合国家标准,这种调查适用抽样调查.(填全面调查或者抽样调查)考点:全面调查与抽样调查.专题:推理填空题.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:由于食品数量庞大,且抽测具有破坏性,适用抽样调查,故答案为抽样调查.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.16.(3分)(2013•贺州)如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是6π.考点:扇形面积的计算分析:图中阴影部分的面积=扇形ABD的面积+三角形DBE的面积﹣三角形ABC的面积.又由旋转的性质知△ABC≌△DBE,所以三角形DBE的面积=三角形ABC的面积.解答:解:∵根据旋转的性质知∠ABD=60°,△ABC≌△DBE,∴S△ABC﹣S△DBE,∴S阴影=S扇形ABD+S△DBE﹣S△ABC=S扇形ABD==6π.故答案是:6π.点评:本题考查了扇形面积的计算.解题的难点是找出图中阴影部分的面积=扇形ABD的面积+三角形DBE的面积﹣三角形ABC的面积.17.(3分)(2013•贺州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是①②⑤.(填正确结论的序号)考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,∴b2>4ac,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③∵抛物线的对称轴为x=﹣=1,b=﹣2a,∴2a+b=0,故2a﹣b=0错误;④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④错误;⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;所以这结论正确的有①②⑤.故答案为:①②⑤.点评:此题主要考查了图象与二次函数系数之